摘要:
Disclosed are: a magnetic shielding material having excellent magnetic shielding property at a low magnetic field; and a magnetic shielding component and a magnetic shielding room each using the magnetic shielding material. Specifically disclosed is a magnetic shielding material comprising the following components (by mass): Ni: 70.0-85.0%, Cu: 0.6% or less, Mo: 10.0% or less and Mn: 2.0% or less, with the remainder being substantially Fe. The magnetic shielding material has a relative magnetic permeability of 40,000 or more under a magnetic field of 0.05 A/m and a squareness ratio (Br/B0.8) of 0.85 or less, wherein the squareness ratio (Br/B0.8) is a ratio of a remanent magnetic flux density (Br) to a maximum magnetic flux density (B0.8) in a DC hysteresis curve produced under the maximum magnetic field of 0.8 A/m.
摘要:
Disclosed are: a magnetic shielding material having excellent magnetic shielding property at a low magnetic field; and a magnetic shielding component and a magnetic shielding room each using the magnetic shielding material. Specifically disclosed is a magnetic shielding material comprising the following components (by mass): Ni: 70.0-85.0%, Cu: 0.6% or less, Mo: 10.0% or less and Mn: 2.0% or less, with the remainder being substantially Fe. The magnetic shielding material has a relative magnetic permeability of 40,000 or more under a magnetic field of 0.05 A/m and a squareness ratio (Br/B0.8) of 0.85 or less, wherein the squareness ratio (Br/B0.8) is a ratio of a remanent magnetic flux density (Br) to a maximum magnetic flux density (B0.8) in a DC hysteresis curve produced under the maximum magnetic field of 0.8 A/m.
摘要:
A metallic member including not more than 0.6% C, 12 to 19% Cr, 6 to 12% Ni, not more than 2% Mn, not more than 2% Mo, not more than 1% Nb and the balance being Fe and inevitable impurities, where Hirayama's equivalent H eq=[Ni %]+1.05 [Mn %]+0.65 [Cr %]+0.35 [Si %]+12.6 [C %] is 20 to 23%; Nickel equivalent Ni eq=[Ni %]+30 [C %]+0.5 [Mn %] is 9 to 12%, and Chromium equivalent Cr eq=[Cr %]+[Mo %]+1.5 [Si %]+0.5 [Nb %] is 16 to 19, wherein % is by weight, is made to have at least one ferromagnetized part having a magnetic flux density B4000 of not less than 0.3 T and at least one non-magnetized part having a relative magnetic permeability &mgr; of not more than 1.2 at a temperature of not less than −40° C., as continuously and integrally formed. The non-magnetized part has crystal grain sizes of not more than 30 &mgr;m. The metallic member is subjected to magnetization and successive local non-magnetization of part or parts of the ferromagnetized member, and the thus obtained composite magnetic member is employed as a support member such as a sleeve in electromagnetic valves.
摘要:
A high strength lead frame material consists, by weight, of 0.5 to 22% Co, 22 to 32.5% Ni, not more than 1.0% Mn and not more than 0.5% Si and the balance Fe and incidental impurities. The contents of Ni and Co are selected so that the Ni content is 27 to 32.5% when the Co content is less than 12%, and so that, when the Co content is not less than 12%, the Ni content and the Co content meet the condition of 66%.ltoreq. 2Ni+Co.ltoreq.74%. The material has a two-phase structure formed of austenitic phase and martensitic phase, the austenitic phase occupying not less than 50% of the structure.
摘要翻译:高强度引线框架材料按重量计包含0.5至22%的Co,22至32.5%的Ni,不大于1.0%的Mn和不多于0.5%的Si,余量为Fe和附带的杂质。 选择Ni和Co的含量,使得当Co含量小于12%时,Ni含量为27〜32.5%,并且当Co含量不小于12%时,Ni含量和Co含量 满足66% = 2Ni + Co = 74%的条件。 该材料具有由奥氏体相和马氏体相形成的两相结构,奥氏体相占据结构的50%以上。
摘要:
A high-fineness shadow mask material comprising 33-40% by weight of Ni, 0.0001-0.0015% by weight of one or more of boron, magnesium and titanium, and the remainder consisting essentially of Fe, wherein the contents of sulfur and aluminum are confined to not more than 0.0020% and not more than 0.020% by weight, respectively, and a process for producing the material. The shadow mask material according to this invention is excellent in hot working property and in etching properties.
摘要:
The rotary machine is composed of the rotor having magnetic poles and the stator having the stator yoke portion constituting the iron core tooth portion wound by the stator winding and the flux flow path of the magnetic poles. The rotor is composed of a metallic material having ferromagnetic parts and non-magnetic parts as a member and has a magnetic barrier area composed of the slit portion for blocking the bypath magnetic path in the periphery of the rotor and the non-magnetic parts. The rotary machine that produced torque can be increased sufficiently and the mechanical strength during high-speed running is improved and an electrical vehicle using it.
摘要:
A metallic member including not more than 0.6% C, 12 to 19% Cr, 6 to 12% Ni, not more than 2% Mn, not more than 2% Mo, not more than 1% Nb and the balance being Fe and inevitable impurities, whereHirayama's equivalent H eq=�Ni %!+1.05 �Mn %!+0.65 �Cr %!+0.35 �Si %!+12.6 �C %! is 20 to 23%;Nickel equivalent Ni eq=�Ni %!+30 �C %!+0.5 �Mn %! is 9 to 12%, andChromium equivalent Cr eq=�Cr %!+�Mo %!+1.5 �Si %!+0.5 �Nb %! is 16 to 19, wherein % is by weight, is made to have at least one ferromagnetized part having a magnetic flux density B.sub.4000 of not less than 0.3 T and at least one non-magnetized part having a relative magnetic permeability .mu. of not more than 1.2 at a temperature of not less than -40.degree. C., as continuously and integrally formed. The non-magnetized part has crystal grain sizes of not more than 30 .mu.m. The metallic member is subjected to ferromagnetization and successive local non-magnetization of part or parts of the ferromagnetized member, and the thus obtained composite magnetic member is employed as a support member such as a sleeve in electromagnetic valves.
摘要:
A high strength lead frame material consists essentially, by weight, of 0.5 to 22% Co, 22 to 32.5% Ni, not more than 1.0% Mn and not more than 0.5% Si and the balance Fe and incidental impurities. The contents of Ni and Co are selected so that the Ni content is 27 to 32.5% when the Co content is less than 12%, and so that, when the Co content is not less than 12%, the Ni content and the Co content meet the condition of 66%.ltoreq.2Ni+Co.ltoreq.74%. The material has a multi-phase structure formed of austenitic phase, martensitic phase, and ferritic phase, the austenitic phase occupying not less than 50% of the structure.The method of producing the alloy of the invention comprises the steps of solid-solutioning the material of the above composition at a temperature not less than austenitizing completion temperature, cold-rolling the material at a rate of 40 6to 90% in reduction, and annealing the material at a temperature less than the austenitizing completion temperature.
摘要:
A metallic member including not more than 0.6% C, 12 to 19% Cr, 6 to 12% Ni, not more than 2% Mn, not more than 2% Mo, not more than 1% Nb and the balance being Fe and inevitable impurities, where Hirayama's equivalent H eq=[Ni %]+1.05 [Mn %]+0.65 [Cr %]+0.35 [Si %]+12.6 [C %] is 20 to 23%; Nickel equivalent Ni eq=[Ni %]+30 [C %]+0.5 [Mn %] is 9 to 12%, and Chromium equivalent Cr eq=[Cr %]+[Mo %]+1.5 [Si %]+0.5 [Nb %] is 16 to 19, wherein % is by weight, is made to have at least one ferromagnetized part having a magnetic flux density B4000 of not less than 0.3T and at least one non-magnetized part having a relative magnetic permeability &mgr; of not more than 1.2 at a temperature of not less than −40° C., as continuously and integrally formed. The non-magnetized part has crystal grain sizes of not more than 30 &mgr;m. The metallic member is subjected to by ferromagnetization and successive local non-magnetization of part or parts of the ferromagnetized member, and the thus obtained composite magnetic member is employed as a support member such as a sleeve in electromagnetic valves.
摘要:
The shadow mask sheet having excellent etchability and made of an Fe-Ni invar alloy consisting essentially of 30-40 weight % of Ni, the balance being substantially Fe and inevitable impurities, having a percentage of {100} texture of 85% or more in a rolled surface and a fibrous microstructure in a transverse cross section can be produced by hot-rolling the Fe-Ni invar alloy; conducting cold rolling at a rolling reduction ratio of 85% or more and annealing at 700.degree. C. or higher in this order at least once; and then conducting cold rolling at a rolling reduction ratio not exceeding that in the previous cold rolling step and annealing at a temperature of 850.degree. C. or lower in this order.