Abstract:
The method for tuning the magnetic behavior of soft magnetic nanowires includes forming a pair of defects at axially-opposed ends of the nanowire. The defects change the switching field of the nanowire. As demonstrated by Object-Oriented MicroMagnetic Framework (OOMMF) simulation, the switching field value of the nanowire modified by a pair of defects at the two axially-opposed ends of the nanowire is more than the switching field value of a defect-free nanowire. The defect at each end may be a notch or an anti-notch.
Abstract:
A light-emitting device can be folded in such a manner that a flexible light-emitting panel is supported by a plurality of housings which are provided spaced from each other and the light-emitting panel is bent so that surfaces of adjacent housings are in contact with each other. Furthermore, in the light-emitting device, in which part or the whole of the housings have magnetism, the two adjacent housings can be fixed to each other by a magnetic force when the light-emitting device is used in a folded state.
Abstract:
A magnetic composition includes: coarse powder containing a non-crystalline iron-based material; medium powder containing a crystalline iron-based material; and fine powder containing nickel. A ratio of the coarse powder and the medium powder is in a range of 65:35 to 80:20, and the amount of the fine powder is in a range of 3 wt % to 7 wt % on the basis of a total weight of the coarse powder and the medium powder.
Abstract:
Devices and methods of forming a device are disclosed. The method includes providing a wafer that includes a center insulator layer sandwiched by a top substrate and a bottom substrate. Both sides of the wafer are patterned and etched in sequence to form deep trenches in both substrates. A conductive seed layer is formed on both sides of the wafer in sequence to cover all exposed areas. Both sides of the wafer are electroplated simultaneously to fill both deep trenches with a conductive material. Both sides of the wafer are polished in sequence to form a coplanar surface. A protective layer is deposited on both sides of the wafer in sequence. Selective portions of the protective layer on both sides are patterned and etched in sequence to expose micro bump bonding areas. Micro bumps are formed on both sides of the wafer in sequence to facilitate electrical connection.
Abstract:
Disclosed are magnetic structures, including on-chip inductors comprising laminated layers comprising, in order, a barrier and/or adhesion layer, a antiferromagnetic layer, a magnetic growth layer, a soft magnetic layer, an insulating non-magnetic spacer, a soft magnetic layer, a magnetic growth later, an antiferromagnetic layer. Also disclosed are methods of making such structures.
Abstract:
A solenoid valve has a housing defining a first axis and second axis, a solenoid which produces a magnetic field along the first axis, a valve shaft movable between open and closed positions along the second axis, and a manifold mounted to the housing. The shaft is biased toward the closed position by a spring and mechanical forces sufficient to overcome the force of the spring are transferred from the solenoid to the shaft by a lever to displace the shaft and then hold a first poppet valve open. The first poppet valve, which interacts with a portion of the housing to close the first valve, and a second poppet valve, which interacts with portions of the manifold to route fluid to the desired port, are mounted to the shaft. An electronic circuit controls delivery of current to the solenoid to shift and hold the shaft in the open position.
Abstract:
Magnetic core inductors implemented on integrated circuits and methods for fabricating such magnetic core inductors are disclosed. An exemplary magnetic core inductor includes a bottom magnetic plate that includes a center portion and first, second, third, and fourth extension portions extending from the center portion. The exemplary magnetic core inductor includes an interlayer dielectric layer disposed over the bottom magnetic plate, and within the interlayer dielectric layer, first, second, third, and fourth via trenches extending above a respective one of the first, second, third, and fourth extension portions, and a fifth via trench extending above the center portion. The magnetic core inductor further includes a stacked-ring inductor coil including a plurality of inductor rings surrounding the fifth via trench and a top magnetic plate including a center portion and first, second, third, and fourth extension portions extending from the center portion.
Abstract:
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
Abstract:
A solenoid valve has a housing defining a first axis and second axis, a solenoid which produces a magnetic field along the first axis, a valve shaft movable between open and closed positions along the second axis, and a manifold mounted to the housing. The axis is biased toward the closed position by a spring and mechanical forces sufficient to overcome the force of the spring are transferred from the solenoid to the shaft by a lever to open the valve and then hold the valve open. A poppet seal, which interacts with a portion of the housing to close the valve, and a spool seal, which interacts with portions of the manifold to route fluid to the desired port, are mounted to the shaft. An electronic circuit controls delivery of current to the solenoid to shift and hold the shaft in the open position.
Abstract:
An inductor can include a first substrate, a magnetic piece, and a conductor. The first substrate can be formed within a second substrate. The magnetic piece can be connected to a first side of the first substrate. The conductor can be formed within the second substrate, on the second substrate, or both. The conductor can have an input and an output. The conductor can be configured to surround the first substrate without being in contact with the first substrate and without being in contact with the magnetic piece.