摘要:
A liquid crystal display panel 10A of the invention has gate electrodes G of TFTs, scan lines 16, and auxiliary capacitor electrodes 18a, which are coated with a first insulating film 27 composed of a thick insulating layer 25 and thinned insulating layer 26. A part above the auxiliary capacitor electrodes 18a is coated only with the thinned insulating layer 26, and drain electrodes D are extended on the first insulating film 27, which is not thinned, so as to coat the thinned insulating layer 26. On a second insulating film 28 provided between the pixel electrodes 20 and the drain electrodes D, contact holes 30 are formed at portions above the drain electrodes D on the first insulating film 27, which is not thinned, above the auxiliary capacitor electrodes 18a, and via the contact holes 30, the pixels 20 and the drain electrodes D are electrically coupled to each other. By providing such a constitution, a liquid crystal display device and its manufacturing method can be provided, with only a small number of bright point defects, and with an increased capacitance of the auxiliary capacitor electrodes without a reduction in the aperture ratio of each pixel.
摘要:
A liquid crystal display panel 10A of the invention has gate electrodes G of TFTs, scan lines 16, and auxiliary capacitor electrodes 18a, which are coated with a first insulating film 27 composed of a thick insulating layer 25 and thinned insulating layer 26. A part above the auxiliary capacitor electrodes 18a is coated only with the thinned insulating layer 26, and drain electrodes D are extended on the first insulating film 27, which is not thinned, so as to coat the thinned insulating layer 26. On a second insulating film 28 provided between the pixel electrodes 20 and the drain electrodes D, contact holes 30 are formed at portions above the drain electrodes D on the first insulating film 27, which is not thinned, above the auxiliary capacitor electrodes 18a, and via the contact holes 30, the pixels 20 and the drain electrodes D are electrically coupled to each other. By providing such a constitution, a liquid crystal display device and its manufacturing method can be provided, with only a small number of bright point defects, and with an increased capacitance of the auxiliary capacitor electrodes without a reduction in the aperture ratio of each pixel.
摘要:
A liquid crystal display device includes two substrates, liquid crystal therebetween, and sub-pixel regions. Each sub-pixel region is divided into first to fourth display regions by a first axis extending orthogonal to an optical axis of a polarizing plate and a second axis extending orthogonal to the first axis. Each first to fourth display region includes slit electrodes on the second electrodes along the first axis. First slit electrodes in the first display region and second slit electrodes in the second display region are symmetric relative to the first axis. Third slit electrodes in the third display region and fourth slit electrodes in the fourth display region are symmetric relative to the first axis. The first and fourth slit electrodes are symmetric relative to the second axis. The second and third slit electrodes are symmetric relative to the second axis.
摘要:
Provided is a liquid crystal display device including: a pair of transparent substrates including a liquid crystal layer interposed therebetween, wherein, at the liquid crystal layer side of one of the pair of transparent substrates, a plurality of scan lines and a plurality of signal lines are arranged in a display area in a matrix, first electrodes are formed in pixel areas partitioned by the scan lines and the signal lines, a second electrode is formed on the first electrodes with an insulating film interposed therebetween over at least the display area, a common line is formed outside the display area, and the second electrode is electrically connected to the common line via a low-resistance line which is formed along at least one side of the display area.
摘要:
An FFS mode liquid crystal display panel 10A includes an array substrate having first electrodes 14 each provided in a space delimited by a plurality of scan lines 12 and signal lines 17, second electrodes 21 provided on the first electrodes 14 with an insulator therebetween, and a plurality of slits 20A provided to each of the second electrodes 21 in parallel with one another in a direction crossing the signal lines 17; and a color filter substrate having a color filter layer. Each of the slits 20A has an open end 20A′ on one side. The color filter layer has a centerline 30 extending along the signal lines 17 for individual pixels, and the centerline 30 coincides with a display centerline 32 that is shifted toward the open end side of the slits from a centerline 31 of each second electrode 21 as viewed from above. Accordingly, an FFS mode liquid crystal display panel is obtained that causes no color mixture with this arrangement in which the slits each having an open end on one side are formed in each second electrode.
摘要:
A transverse field type liquid crystal display panel has multiple scan lines 12 and common wires 13 provided in parallel, multiple signal lines 17 provided in the direction crossing the scan lines 12, and common electrodes 14 and pixel electrodes 21 formed in the regions delimited by the multiple scan lines 12 and signal lines 17. At least part of the surface of an insulator laid over the scan lines 17 is covered by shield electrodes 22 constituted of a conductive material. Thanks to such structure, there can be provided a transverse field type—that is, an IPS mode or FFS mode—liquid crystal display panel that is equipped with a device for preventing burn-in due to the voltage that is applied to the scan lines.
摘要:
A method of manufacturing a liquid crystal display device 10A according to an embodiment of the present invention includes: forming a pixel electrode 19a for each sub-pixel on the surface of a planarization film 18, forming an insulator 20 over the whole surface, simultaneously forming first to third contact holes 21a to 21c so that a drain electrode D, a connection portion 161 of a common line, and the pixel electrode 19a are exposed from the surface of the insulator 20, forming a film of a transparent conductive material over the whole surface, forming a common electrode 22a including a plurality of slits for each sub-pixel, and connecting the common electrode 22 and the connection portion 161 via the first contact hole 21a and connecting the pixel electrode 19a and the drain electrode D via an interface-structured conductive path 23 formed via the second contact hole 21b, the surface of the insulator 20, and the third contact hole 21c. Accordingly, the invention provides an FFS mode liquid crystal display device and a method of manufacturing the same in which the plurality of contact holes can be formed simultaneously in a single step and the pixel electrode and the common electrode are disposed on the planarization film.
摘要:
The present invention provides a fringe field switching (FFS) mode liquid crystal display panel including a plurality of scanning lines 12 and common lines 13 provided in parallel, a plurality of signal lines 14 provided in a crank manner in a direction perpendicular to the scanning lines 12, and pixel electrodes 181 and 182 each formed between the plurality of scanning lines 12 and signal lines 14 in a delta arrangement. Each of the pixel electrodes 181 and 182 has a plurality of slits 171 and 172, respectively, inclined in different directions to each other with respect to an axis x parallel to the scanning lines 12 and positioned between adjacent scanning lines 12. The pixel electrodes 181 in odd-numbered rows and the pixel electrodes 182 in even-numbered rows are inverted to each other with respect to another axis perpendicular to the axis x. With such features, the FFS mode liquid crystal display panel provides symmetrical viewing angle generating no spots in a transverse direction, a wide viewing angle, a bright display with high transmittance and excellent display quality.
摘要:
A Fringe Field Switching (“FFS”) mode liquid crystal display panel 10A includes an array substrate having first electrodes 14 each provided in a space delimited by a plurality of scan lines 12 and signal lines 17, second electrodes 21 provided on the first electrodes 14 with an insulator therebetween, and a plurality of slits 20A provided to each of the second electrodes 21 in parallel with one another in a direction crossing the signal lines 17; and a color filter substrate having a color filter layer. Each of the slits 20A has an open end 20A′ on one side. The color filter layer has a centerline 30 extending along the signal lines 17 for individual pixels, and the centerline 30 coincides with a display centerline 32 that is shifted toward the open end side of the slits from a centerline 31 of each second electrode as viewed from above. Accordingly, an FFS mode liquid crystal display panel is obtained that causes no color mixtures with this arrangement in which the slits each having an open end on one side are formed in each second electrode.
摘要:
The present invention provides a fringe field switching (FFS) mode liquid crystal display panel including a plurality of scanning lines 12 and common lines 13 provided in parallel, a plurality of signal lines 14 provided in a crank manner in a direction perpendicular to the scanning lines 12, and pixel electrodes 181 and 182 each formed between the plurality of scanning lines 12 and signal lines 14 in a delta arrangement. Each of the pixel electrodes 181 and 182 has a plurality of slits 171 and 172, respectively, inclined in different directions to each other with respect to an axis x parallel to the scanning lines 12 and positioned between adjacent scanning lines 12. The pixel electrodes 181 in odd-numbered rows and the pixel electrodes 182 in even-numbered rows are inverted to each other with respect to another axis perpendicular to the axis x. With such features, the FFS mode liquid crystal display panel provides symmetrical viewing angle generating no spots in a transverse direction, a wide viewing angle, a bright display with high transmittance and excellent display quality.