摘要:
A driving apparatus including an inverter unit for energizing the coil by switching ON and OFF of the switching element, an energization pattern determination unit for selecting a plurality of energization patterns, each of which indicates a direction of a current that flows through the coil, one by one when driving of a motor is started, and energizing the coil by switching ON and OFF of the switching element based on a selected energization pattern at a duty ratio corresponding to a value of a maximum current capable of being supplied by the power supply apparatus, a current applied time measurement unit for measuring an energization time, which is a time until a value of the current flowing through the coil reaches a predetermined target current value for each energization pattern, and a rotor stop position estimation unit for estimating a position at which the rotor stops.
摘要:
A brushless motor control apparatus includes a mask processing unit to which digital induced voltage signal is input, a energizing current timing generation processing unit, a pulse width detection unit, and an advance angle correction unit for performing advance angle correction. The pulse width detection unit measures pulse width of spike voltage, and the advance angle correction unit calculates the correction to the advance angle according to the length of this pulse width. The energizing current timing generation processing unit takes half the value obtained after subtracting the correction value from the edge interval of the position detection signal generated in the mask processing unit as the advance angle.
摘要:
When starting a brushless motor, if the stop position of the rotor is detected between time t1 and time t2, a start-up excitation pattern in accordance with the rotor stop position is input for an initial energization time Ts1. Afterward, when the energization is stopped, a plurality of signals SL1, SL2, SL3, SL4 are generated in sequence in excitation switch timing signals in accordance with the rotational position of the coasting rotor. From these signals SL1 to SL4, the rotor position is detected using the second and subsequent signals SL2 to SL4 and then the process shifts to ordinary energization switch control. In accordance with the present invention, it is possible to start up a motor in a short time with a simple method so as to obtain a large torque during start-up.
摘要:
When starting a brushless motor, if the stop position of the rotor is detected between time t1 and time t2, a start-up excitation pattern in accordance with the rotor stop position is input for an initial energization time Ts1. Afterward, when the energization is stopped, a plurality of signals SL1, SL2, SL3, SL4 are generated in sequence in excitation switch timing signals in accordance with the rotational position of the coasting rotor. From these signals SL1 to SL4, the rotor position is detected using the second and subsequent signals SL2 to SL4 and then the process shifts to ordinary energization switch control. In accordance with the present invention, it is possible to start up a motor in a short time with a simple method so as to obtain a large torque during start-up.