摘要:
The present invention relates to a classifier cascade object detection system. The system operates by inputting an image patch into parallel feature generation modules, each of the feature generation modules operable for extracting features from the image patch. The features are provided to an opportunistic classifier cascade, the opportunistic classifier cascade having a series of classifier stages. The opportunistic classifier cascade is executed by progressively evaluating, in each classifier in the classifier cascade, the features to produce a response, with each response progressively utilized by a decision function to generate a stage response for each classifier stage. If each stage response exceeds a stage threshold then the image patch is classified as a target object, and if the stage response from any of the decision functions does not exceed the stage threshold, then the image patch is classified as a non-target object.
摘要:
Described is a system for registering a viewpoint of an imaging sensor with respect to a geospatial model or map. An image of a scene of a geospatial region comprising an object is received as input. The image of the scene is captured by a sensor having a current sensor state. Observation data related to the object's state is received, wherein the observation data comprises an object behavior of the object given the geospatial region. An estimate of the current sensor state is generated using a probability of an observation from the observation data given the current sensor state x. Finally, the image of the scene is registered with a geospatial model or map based on the estimate of the current sensor state.
摘要:
A vision-based system for automatically detecting the type of object within a specified area, such as the type of occupant within a vehicle is presented. The type of occupant can then be used to determine whether an airbag deployment system should be enabled or not. The system extracts different features, including wavelet features and/or a disparity map from images captured by image sensors. These features are then processed by classification algorithms to produce class confidences for various occupant types. The occupant class confidences are fused and processed to determine occupant type. In a preferred embodiment, image features from image edges, wavelet features, and disparity are used. Various classification algorithms may be implemented to classify the object. Use of the disparity map and/or wavelet features provides greater computational efficiency.
摘要:
An object recognition system is described that incorporates swarming classifiers. The swarming classifiers comprise a plurality of software agents configured to operate as a cooperative swarm to classify an object group in a domain. Each node N represents an object in the group having K object attributes. Each agent is assigned an initial velocity vector to explore a KN-dimensional solution space for solutions matching the agent's graph. Further, each agent is configured to search the solution space for an optimum solution. The agents keep track of their coordinates in the KN-dimensional solution space that are associated with an observed best solution (pbest) and a global best solution (gbest). The gbest is used to store the best solution among all agents which corresponds to a best graph among all agents. Each velocity vector thereafter changes towards pbest and gbest, allowing the cooperative swarm to classify of the object group.
摘要:
Described is a method for image registration utilizing particle swarm optimization (PSO). In order to register two images, a set of image windows is first selected from a test image and transformed. A plurality of software agents is configured to operate as a cooperative swarm to optimize an objective function, and an objective function is then evaluated at the location of each agent. The objective function represents a measure of the difference or registration quality between at least one transformed image window and a reference image. The position vectors representing the current individual best solution found and the current global best solution found by all agents are then updated according to PSO dynamics. Finally, the current global best solution is compared with a maximum pixel value which signifies a match between an image window and the reference image. A system and a computer program product are also described.
摘要:
The present invention relates to a method for three-dimensional (3D) object recognition using region of interest geometric features. The method includes acts of receiving an implicit geometry representation regarding a three-dimensional (3D) object of interest. A region of interest (ROI) is centered on the implicit geometry representation such that there is at least one intersection area between the ROI and the implicit geometry representation. Object shape features are calculated that reflect a location of the ROI with respect to the implicit geometry representation. The object shape features are assembled into a feature vector. A classification confidence value is generated with respect to a particular object classification. Finally, the 3D object of interest is classified as a particular object upon the output of a statistical classifier reaching a predetermined threshold.
摘要:
Described is a method for flexible feature adaptation and matching for object recognition in visual systems which incorporates evolutionary optimization. In the present invention, an analysis window is provided to select a portion of an input image to be analyzed for the presence or absence of an object. The analysis window is then divided into spatial regions, and a feature kernel function for each spatial region is selected and optimized. A feature value for each spatial region is calculated by finding a suitable location that generates the best matching features to a stored set using an optimization algorithm. The feature values are concatenated for the spatial regions to comprise a feature vector. Finally, the feature vector is processed by a classification algorithm, and a determination is made whether the object is present in the analysis window.
摘要:
A safety monitoring system for a workspace area. The workspace area related to a region having automated moveable equipment. A plurality of vision-based imaging devices capturing time-synchronized image data of the workspace area. Each vision-based imaging device repeatedly capturing a time synchronized image of the workspace area from a respective viewpoint that is substantially different from the other respective vision-based imaging devices. A visual processing unit for analyzing the time-synchronized image data. The visual processing unit processes the captured image data for identifying a human from a non-human object within the workspace area. The visual processing unit further determining potential interactions between a human and the automated moveable equipment. The visual processing unit further generating control signals for enabling dynamic reconfiguration of the automated moveable equipment based on the potential interactions between the human and the automated moveable equipment in the workspace area.
摘要:
A method, computer program product, and system for processing imagery is presented. The imagery is processed by receiving data regarding a scene (such as from a sensor monitoring a scene). The scene includes an object having a dimension. Flow vectors are computed from the data, while a flow histogram space is generated from the flow vectors. A line segment (with a length) is found within the flow histogram space. An object in the scene is associated with the length segment, and the dimensions of the object are estimated based on the length of the line segment.
摘要:
A computer vision system includes distorting optics producing distorted or warped input images. The system includes an integral feature object classifier trained using an undistorted image space. Undistorted integral feature values are calculated directly from distorted input images without undistorting or dewarping the distorted input image.