摘要:
Described is a system for registering a viewpoint of an imaging sensor with respect to a geospatial model or map. An image of a scene of a geospatial region comprising an object is received as input. The image of the scene is captured by a sensor having a current sensor state. Observation data related to the object's state is received, wherein the observation data comprises an object behavior of the object given the geospatial region. An estimate of the current sensor state is generated using a probability of an observation from the observation data given the current sensor state x. Finally, the image of the scene is registered with a geospatial model or map based on the estimate of the current sensor state.
摘要:
The present invention relates to a classifier cascade object detection system. The system operates by inputting an image patch into parallel feature generation modules, each of the feature generation modules operable for extracting features from the image patch. The features are provided to an opportunistic classifier cascade, the opportunistic classifier cascade having a series of classifier stages. The opportunistic classifier cascade is executed by progressively evaluating, in each classifier in the classifier cascade, the features to produce a response, with each response progressively utilized by a decision function to generate a stage response for each classifier stage. If each stage response exceeds a stage threshold then the image patch is classified as a target object, and if the stage response from any of the decision functions does not exceed the stage threshold, then the image patch is classified as a non-target object.
摘要:
A vision-based system for automatically detecting the type of object within a specified area, such as the type of occupant within a vehicle is presented. The type of occupant can then be used to determine whether an airbag deployment system should be enabled or not. The system extracts different features, including wavelet features and/or a disparity map from images captured by image sensors. These features are then processed by classification algorithms to produce class confidences for various occupant types. The occupant class confidences are fused and processed to determine occupant type. In a preferred embodiment, image features from image edges, wavelet features, and disparity are used. Various classification algorithms may be implemented to classify the object. Use of the disparity map and/or wavelet features provides greater computational efficiency.
摘要:
An object recognition system is described that incorporates swarming classifiers. The swarming classifiers comprise a plurality of software agents configured to operate as a cooperative swarm to classify an object group in a domain. Each node N represents an object in the group having K object attributes. Each agent is assigned an initial velocity vector to explore a KN-dimensional solution space for solutions matching the agent's graph. Further, each agent is configured to search the solution space for an optimum solution. The agents keep track of their coordinates in the KN-dimensional solution space that are associated with an observed best solution (pbest) and a global best solution (gbest). The gbest is used to store the best solution among all agents which corresponds to a best graph among all agents. Each velocity vector thereafter changes towards pbest and gbest, allowing the cooperative swarm to classify of the object group.
摘要:
Described is a system for content recognition, search, and retrieval in visual data. The system is configured to perform operations of receiving visual data as an input, processing the visual data, and extracting distinct activity-agnostic content descriptors from the visual data at each level of a hierarchical content descriptor module. The resulting content descriptors are then indexed with a hierarchical content indexing module, wherein each level of the content indexing module comprises a distinct set of indexed content descriptors. The visual data, generated content descriptors, and indexed content descriptors are then stored in a storage module. Finally, based on a content-based query by a user, the storage module is searched, and visual data containing the content of interest is retrieved and presented to the user. A method and computer program product for content recognition, search, and retrieval in visual data are also described.
摘要:
Described is a system for rapid directed area search utilizing particle swarm optimization. The system first extracts salient regions from an input image. The system then detects regions of interest from the salient regions utilizing particle swarm optimization, wherein a swarm of software agents, or particles, cooperate to locate an objective function optima, or region of interest, in an image. A set of local feature descriptors are then extracted from the image, wherein a local feature descriptor corresponds to a neighborhood surrounding a point of interest in a region of interest in the image. Additionally, the set of local feature descriptors are clustered hierarchically into a database so that a closest match between a new input image and a stored image can be determined. Finally, the matching regions of the two images are registered to align matching regions to allow detection of changes between the images.
摘要:
Described is a system for anomaly detection to detect an anomalous object in an image, such as a concealed object beneath a person's clothing. The system is configured to generate a subspace model for a normal class using training images. The normal class represents normal objects in a common class. The system receives a novel image having an object in the common class. A set of geometric landmarks are identified in the object in the novel image for use in registering the image. The novel image is registered by warping the image so that the geometric landmarks coincide in the novel image and the training images, resulting in a warped novel image having an object. Thereafter, the system determines if the object in the warped novel image is anomalous by measuring the distance of the warped novel image from the subspace model. Finally, if anomalous, an operator is notified accordingly.
摘要:
The present invention relates to a system, method, and computer program product for recognition objects in a domain which combines feature-based object classification with efficient search mechanisms based on swarm intelligence. The present invention utilizes a particle swarm optimization (PSO) algorithm and a possibilistic particle swarm optimization algorithm (PPSO), which are effective for optimization of a wide range of functions. PSO searches a multi-dimensional solution space using a population of “software agents” in which each software agent has its own velocity vector. PPSO allows different groups of software agents (i.e., particles) to work together with different temporary search goals that change in different phases of the algorithm. Each agent is a self-contained classifier that interacts and cooperates with other classifier agents to optimize the classifier confidence level. By performing this optimization, the swarm simultaneously finds objects in the scene, determines their size, and optimizes the classifier parameters.
摘要:
An object recognition system is described that incorporates swarming classifiers. The swarming classifiers comprise a plurality of software agents configured to operate as a cooperative swarm to classify an object in a domain as seen from multiple view points. Each agent is a complete classifier and is assigned an initial velocity vector to explore a solution space for object solutions. Each agent is configured to perform an iteration, the iteration being a search in the solution space for a potential solution optima where each agent keeps track of its coordinates in multi-dimensional space that are associated with an observed best solution (pbest) that the agent has identified, and a global best solution (gbest) where the gbest is used to store the best location among all agents. Each velocity vector changes towards pbest and gbest, allowing the cooperative swarm to concentrate on the vicinity of the object and classify the object.
摘要:
An object recognition system is described that incorporates swarming classifiers with attention mechanisms. The object recognition system includes a cognitive map having a one-to-one relationship with an input image domain. The cognitive map records information that software agents utilize to focus a cooperative swarm's attention on regions likely to contain objects of interest. Multiple agents operate as a cooperative swarm to classify an object in the domain. Each agent is a classifier and is assigned a velocity vector to explore a solution space for object solutions. Each agent records its coordinates in multi-dimensional space that are an observed best solution that the agent has identified, and a global best solution that is used to store the best location among all agents. Each velocity vector thereafter changes to allow the swarm to concentrate on the vicinity of the object and classify the object when a classification level exceeds a preset threshold.