摘要:
An ytterbium-doped optical fiber includes: a core which contains at least ytterbium, aluminum, and phosphorus; and a cladding which encircles the core, wherein an aluminum oxide equivalent concentration of the aluminum in the core is 0.2 mol % or more, a diphosphorus pentaoxide equivalent concentration of the phosphorus is higher than the aluminum oxide equivalent concentration, and the core either does not contain germanium or contains less than 1.1 mol % of germanium in a germanium dioxide equivalent concentration.
摘要:
An ytterbium-doped optical fiber of the present invention includes: a core which contains ytterbium, aluminum, and phosphorus and does not contain germanium; and a cladding which surrounds this core. The ytterbium concentration in the core in terms of ytterbium oxide is 0.09 to 0.68 mole percent. The molar ratio between the phosphorus concentration in the core in terms of diphosphorus pentoxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 30. The molar ratio between the aluminum concentration in the core in terms of aluminum oxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 32. The molar ratio between the above aluminum concentration in terms of aluminum oxide and the above phosphorus concentration in terms of diphosphorus pentoxide is 1 to 2.5.
摘要:
Provided is an ytterbium-doped optical fiber including a core containing at least ytterbium, aluminum and phosphorous and a clad surrounding the core, wherein a molar concentration of diphosphorus pentoxide with respect to phosphorus in the core is equal to a molar concentration of aluminum oxide with respect to aluminum in the core, wherein a ratio of a molar concentration of diphosphorus pentoxide with respect to phosphorus in the core to the molar concentration of ytterbium oxide with respect to ytterbium in the core is higher than or equal to 10 and lower than or equal to 30, and wherein a relative refractive index difference between the core and the clad is higher than or equal to 0.05% and lower than or equal to 0.30%.
摘要:
Provided is a multi-cladding optical fiber which includes: a core with an average refractive index n1; and a cladding including an inner cladding with an average refractive index n2 formed on the periphery of the core, an intermediate cladding with an average refractive index n3 formed on the periphery of the inner cladding, and an outer cladding with an average refractive index n4 formed on the periphery of the intermediate cladding where n1>n2>n3>n4. Two or more axisymmetric modes exist in the core at a wavelength of the signal light; the two or more axisymmetric modes including a fundamental mode and at least a high-order mode. When the fiber is bent at a predetermined bending diameter, the high-order mode in the core disperses within the inner cladding due to coupling with an inner cladding mode, so that only the fundamental mode substantially propagates through the core.
摘要:
Provided is a manufacturing method for an optical fiber preform of which the core is doped with a rare earth element. The method includes: depositing glass particles within a silica tube by the modified chemical vapor deposition method, the glass particles mainly consisting of silicon dioxide; adding the rare earth element and aluminum to the glass particles within the silica tube by the solution doping method; heating the silica tube while flowing a phosphorous-containing gas into the silica tube to sinter the glass particles within the silica tube while adding the phosphorous; and heating and collapsing the silica tube to which the rare earth element, the aluminum, and the phosphorous are added.
摘要:
A rare-earth doped core multi-clad fiber includes a core that includes a rare-earth element and a plurality of cladding layers that surround the core. An outermost cladding of the plurality of cladding layers is made of a polymer cladding, the plurality of cladding layers have a polygonal inner cladding, and a shape of a boundary between a second cladding from the outside and the outermost cladding does not have two-fold rotational symmetry. As a result, it is possible to provide a rare-earth doped core multi-clad fiber for an optical amplifier and a fiber laser that has low skew and is inexpensive.
摘要:
A multi-core fiber for an optical pumping device is provided. The multi-core fiber includes a plurality of optical fibers that are inserted into holes of an alignment member. The optical fibers and the alignment member are integrated by heating. The alignment member includes a material that has a lower softening temperature than a softening temperature of the optical fibers.
摘要:
An optical fiber has a first mode field diameter in a dominant mode of an acoustic mode generated in the optical fiber different from a second mode field diameter in a light intensity distribution of the optical fiber. Furthermore, a transmission system is configured to perform an analog signal transmission, a baseband transmission, or an optical SCM transmission by use of the optical fiber.
摘要:
An optical pumping device is provided in which a multi-core fiber obtained by bundling up a plurality of optical fibers, which are input ports, and a double clad fiber for optical pumping are spliced through a bridge fiber composed of a double clad fiber having a tapered shape. Accordingly, it is possible to efficiently couple signal light and pumping light to the double clad fiber for optical pumping.
摘要:
There is provided at low cost an optical fiber suitable for wavelength division multiplex transmissions that has strengthened the tolerance to bending loss at even smaller bending diameters. The present invention is an optical fiber whose base material is silica glass and that has a two layer structure formed by a core that has a substantially uniform refractive index and by a cladding that is located outside the core and that has a substantially uniform refractive index, wherein the optical fiber satisfies the following conditions (1) to (3): (1) an outer diameter of the core is in a range of 4 to 8 μm, and a relative refractive index difference of the core is in a range of 0.4 to 0.8%; (2) chromatic dispersion at a wavelength of 1550 nm is in a range of 2 to 15 ps/nm/km; and (3) effective area at a wavelength of 1550 nm is 40 μm2 or more.