摘要:
A compound containing carboxylate ester and N2S2 ligand bi-functional groups and a manufacturing method thereof are disclosed. The S in the N2S2 ligand of the compound containing carboxylate ester and N2S2 ligand bi-functional groups includes a protective group so as to avoid to be oxidized and easy storage. In a complex reaction, the protective group is automatically released As to the active carboxylate ester, it is for reacting with compounds having amino groups such as amines, amino acids, peptides, or protein etc while the N2S2 ligand is for bonding with technetium or rhenium so as to form neutral complex. The compound containing carboxylate ester and N2S2 ligand bi-functional groups is applied to radiopharmaceuticals such as contrast agents for tissues and target agents.
摘要翻译:公开了含有羧酸酯和N 2 S 2配位体双官能团的化合物及其制备方法。 含有羧酸酯和N2S2配位体双官能团的化合物的N2S2配体中的S包括保护基,以避免被氧化并容易储存。 在复杂的反应中,保护基被自动释放对于活性羧酸酯,它是与具有氨基的化合物如胺,氨基酸,肽或蛋白质等反应,而N2S2配体与锝或铼键合 从而形成中性复合物。 含有羧酸酯和N 2 S 2配位体双功能基团的化合物被应用于放射性药物,例如用于组织和靶标的造影剂。
摘要:
A compound containing carboxylate ester and N2S2 ligand bi-functional groups and a manufacturing method thereof are disclosed. The S in the N2S2 ligand of the compound containing carboxylate ester and N2S2 ligand bi-functional groups includes a protective group so as to avoid to be oxidized and easy storage. In a complex reaction, the protective group is automatically released As to the active carboxylate ester, it is for reacting with compounds having amino groups such as amines, amino acids, peptides, or protein etc while the N2S2 ligand is for bonding with technetium or rhenium so as to form neutral complex. The compound containing carboxylate ester and N2S2 ligand bi-functional groups is applied to radiopharmaceuticals such as contrast agents for tissues and target agents.
摘要翻译:公开了含有羧酸酯和N 2 S 2配位体双官能团的化合物及其制备方法。 含有羧酸酯和N2S2配位体双官能团的化合物的N2S2配体中的S包括保护基,以避免被氧化并容易储存。 在复杂的反应中,保护基被自动释放对于活性羧酸酯,它是与具有氨基的化合物如胺,氨基酸,肽或蛋白质等反应,而N2S2配体与锝或铼键合 从而形成中性复合物。 含有羧酸酯和N 2 S 2配位体双功能基团的化合物被应用于放射性药物,例如用于组织和靶标的造影剂。
摘要:
A method for preparation of N-methyl-3-(2-tributylstannylphenoxy)-3-phenylpropanamine is provided, which includes formation of N-methyl-3-(2-tributylstannylphenoxy)-3-phenylpropanamine, useful as a precursor of a norepinephrine transporter (NET) contrast label [123Iodine](R)—N-methyl-3-(2-iodophenoxy)-3-phenylpropanamine ([123I]MIPP) with a leaving group Bu3Sn.
摘要:
A bifunctional compound with a monosaccharide and a N2S2 ligand, and more particularly, a bifunctional compound with a N2S2 ligand and aminohexylacetyl galactosamine (ah-GalNAc4) is provided. A method for preparing the bifunctional compound with a monosaccharide and a N2S2 ligand is also provided, including activating a carboxyl group in an organic ligand, reacting the activated carboxyl group with a galactopyranoside through amidation, and then hydrolyzing. The bifunctional compound of the present invention is widely useful in nuclear medicine for preparation of liver imaging agents for assisting in correct diagnosis of diseases.
摘要翻译:提供了具有单糖和N2S2配体的双官能化合物,更具体地,提供了具有N 2 S 2配体和氨基己基乙酰基半乳糖胺(ah-GalNAc 4)的双官能化合物。 还提供了用单糖和N 2 S 2配体制备双功能化合物的方法,包括活化有机配体中的羧基,通过酰胺化使活化的羧基与吡喃半乳糖苷反应,然后水解。 本发明的双功能化合物在制备用于辅助正确诊断疾病的肝成像剂的核医学中广泛有用。
摘要:
H3LMN series compounds used as radioactive agents for treatment of liver cancer and a manufacturing method thereof are revealed. 2-thioethylamine hydrochloride is reacted with triphenylmethanol for protection of thiol to obtain 2-[(triphenylmethyl)thio]ethylamine. Then obtain N-[2-((triphenylmethyl)thio)ethyl]chloroacetamide by a transamidation reaction between 2-[(triphenylmethyl)thio]ethylamine and chloroactyl chloride. Next produce a amine-amide-thiol ligand-N-[2-((triphenylmethyl)thio)ethyl][2-((triphenylmethyl)thio)ethylamino]acetamide by a substitution reaction of N-[2-((triphenylmethyl)thio)ethyl]chloroacetamide and 2-[(triphenylmethyl)thio]ethylamine. After respective reaction with 1-bromotetradecane, 1-bromohexadecane and ethyl 16-bromohexadecanoate, H3LMN series compounds are obtained. These amine-amide-dithiols quadridentate ligands can react with MO3+ (M=Tc or Re) to produce electrically neutral complexes. The complexes have high lipophilicity, allowing them soluble in lipiodol to be applied to radiation therapy for liver cancer.
摘要:
H3LMN series compounds used as radioactive agents for treatment of liver cancer and a manufacturing method thereof are revealed. 2-thioethylamine hydrochloride is reacted with triphenylmethanol for protection of thiol to obtain 2-[(triphenylmethyl)thio]ethylamine. Then obtain N-[2-((triphenylmethyl)thio)ethyl]chloroacetamide by a transamidation reaction between 2-[(triphenylmethyl)thio]ethylamine and chloroactyl chloride. Next produce a amine-amide-thiol ligand-N-[2-((triphenylmethyl)thio)ethyl][2-((triphenylmethyl)thio)ethylamino]acetamide by a substitution reaction of N-[2-((triphenylmethyl)thio)ethyl]chloroacetamide and 2-[(triphenylmethyl)thio]ethylamine. After respective reaction with 1-bromotetradecane, 1-bromohexadecane and ethyl 16-bromohexadecanoate, H3LMN series compounds are obtained. These amine-amide-dithiols quadridentate ligands can react with MO3+ (M=Tc or Re) to produce electrically neutral complexes. The complexes have high lipophilicity, allowing them soluble in lipiodol to be applied to radiation therapy for liver cancer.
摘要:
A bifunctional compound containing an amino group and diaminedithiol ligand and a manufacturing method thereof are revealed, the bifunctional compound includes at least one amino group and a diaminedithiol (N2S2) ligand. The amino groups is for reacting with compounds containing carboxylic acids or halogens while the N2S2 ligand binds with technetium or rhenium so as to form an anion complex. The thiol group in the N2S2 ligand is protected by a protecting group for prevention of oxidation and easy storage. This protecting group is released easily during complex reactions. Due to the bifunctional property, the compound is applied to preparation of radiopharmaceuticals such as imaging agents and targeted agents.
摘要:
A bifunctional compound containing an amino group and diaminedithiol ligand and a manufacturing method thereof are revealed, the bifunctional compound includes at least one amino group and a diaminedithiol (N2S2) ligand. The amino groups is for reacting with compounds containing carboxylic acids or halogens while the N2S2 ligand binds with technetium or rhenium so as to form an anion complex. The thiol group in the N2S2 ligand is protected by a protecting group for prevention of oxidation and easy storage. This protecting group is released easily during complex reactions. Due to the bifunctional property, the compound is applied to preparation of radiopharmaceuticals such as imaging agents and targeted agents.
摘要翻译:显示含有氨基和二硫代二醇配体的双官能化合物及其制备方法,双官能化合物包括至少一个氨基和二硫代二醇(N 2 S 2)配体。 氨基用于与含有羧酸或卤素的化合物反应,而N2S2配体与锝或铼结合形成阴离子络合物。 N2S2配体中的硫醇基团被保护基团保护,以防止氧化和容易储存。 这种保护基团在复杂的反应过程中容易释放。 由于双功能性,该化合物被用于制备放射性药物如成像剂和靶向剂。
摘要:
A method for preparing a precursor of radioactive 3-iodobenzylguanidine- N,N′-bis(tert-butyloxycarbonyl)-3-(tri-n-butyltin)benzylguanidine) (MSnBG) is revealed. The method includes following steps. Firstly, obtain 3-iodobenzylguanidine bicarbonate by an addition reaction between 3-iodobenzylamine hydrochloride and cyanamide. Use di-tert-butyl dicarbonate as a protecting agent for NH group and convert 3-iodobenzylguanidine bicarbonate into N,N′-bis(tert-butyloxycarbonyl)-N-(3-iodobenzyl) guanidine. At last, under catalysis of bis(triphenylphosphine) palladium dichloride, obtain a final product MSnBG by a substitution reaction between N,N′-bis(tert-butyloxycarbonyl)-N-(3-iodobenzyl) guanidine and bis(tri-n-butyltin). MSnBG is used in no-carrier-added synthesis of [*l]MIBG.
摘要:
A method for preparing a precursor of radioactive 3-iodobenzylguanidine-N,N′-bis(tert-butyloxycarbonyl)-3-(tri-n-butyltin)benzylguanidine) (MSnBG) is revealed. The MSnBG is a precursor of [*I]MIBG that is used as radioactive imaging agents and antineoplastic drugs. The method includes following steps. Firstly, obtain 3-iodobenzylguanidine bicarbonate by an addition reaction between 3-iodobenzylamine hydrochloride and cyanamide. Use di-tert-butyl dicarbonate as a protecting agent for NH group and convert 3-iodobenzylguanidine bicarbonate into N,N′-bis(tert-butyloxycarbonyl)-N-(3-iodobenzyl) guanidine. At last, under catalysis of bis(triphenylphosphine) palladium dichloride, obtain a final product MSnBG by a substitution reaction between N,N′-bis(tert-butyloxycarbonyl)-N-(3-iodobenzyl) guanidine and bis(tri-n-butyltin). MSnBG is used in no-carrier-added synthesis of [*I]MIBG. The [*I]MIBG obtained by this method has better effect on neuroblastoma treatment than that obtained by conventional, carrier-added method.