摘要:
Techniques to support beamforming for stations in a wireless network are described. In one aspect, a station may support beamforming with implicit feedback or explicit feedback by having capabilities to transmit and receive sounding frames, respond to training request by sending a sounding frame, and respond to request for explicit feedback. In one design of explicit beamforming, the station may send a first frame with a request for explicit feedback and may also send a Null Data Packet (NDP) having at least one training field but no data field. The station may receive a second frame with the explicit feedback, which may be derived based on the NDP. The station may derive steering information (e.g., steering matrices) based on the explicit feedback and may then send a steered frame with beamforming based on the steering information. The station may also perform implicit beamforming using NDP for sounding.
摘要:
Techniques to support beamforming for stations in a wireless network are described. A station may support beamforming with implicit or explicit feedback by having capabilities to transmit and receive sounding frames, responding to training request by sending a sounding frame, and responding to request for explicit feedback. In one explicit beamforming embodiment, the station may send a first frame with an explicit feedback request and may also send a Null Data Packet (NDP) having at least one training field but no data field. The station may receive a second frame with explicit feedback, which may be derived based on the NDP. The station may derive steering information based on explicit feedback and may then send a steered frame with beamforming based on the steering information. Other aspects, embodiments, and features are also claimed and described.
摘要:
Techniques to efficiently schedule and serve stations in a wireless network are described. An access point may aggregate stations with flows carrying traffic having similar characteristics, e.g., VoIP flows. The access point may schedule these stations together in an overall service period. The access point may serve each station in a respective service period within the overall service period. The access point may send a multi poll frame at the start of the overall service period to indicate the start time and/or service period for each station. Each station may decide to power down until its start time. The service periods for the stations may overlap one another. The service period for each station may cover an initial transmission as well as additional transmission and/or retransmission. If additional transmission and/or retransmission are not needed for a given station, then the next station may be served right away.
摘要:
Techniques to efficiently schedule and serve stations in a wireless network are described. An access point may aggregate stations with flows carrying traffic having similar characteristics, e.g., VoIP flows. The access point may schedule these stations together in an overall service period. The access point may serve each station in a respective service period within the overall service period. The access point may send a multi poll frame at the start of the overall service period to indicate the start time and/or service period for each station. Each station may decide to power down until its start time. The service periods for the stations may overlap one another. The service period for each station may cover an initial transmission as well as additional transmission and/or retransmission. If additional transmission and/or retransmission are not needed for a given station, then the next station may be served right away.
摘要:
Beacons may be grouped to facilitate neighbor discovery in a wireless network. For example, neighboring access devices such as IEEE 802.11 access points may cooperate to transmit beacons in a group. In this way, a wireless device seeking to discover the neighboring access devices may scan for the beacons for a shorter period of time. An indication may be provided to enable a wireless device to more efficiently scan the beacons. For example, the indication may indicate the channel the wireless device should scan to receive the next beacon that is to be transmitted. In addition, the indication may include information relating to the transmission time of the next beacon.
摘要:
Techniques to support beamforming for stations in a wireless network are described. In one aspect, a station may support beamforming with implicit feedback or explicit feedback by having capabilities to transmit and receive sounding frames, respond to training request by sending a sounding frame, and respond to request for explicit feedback. In one design of explicit beamforming, the station may send a first frame with a request for explicit feedback and may also send a Null Data Packet (NDP) having at least one training field but no data field. The station may receive a second frame with the explicit feedback, which may be derived based on the NDP. The station may derive steering information (e.g., steering matrices) based on the explicit feedback and may then send a steered frame with beamforming based on the steering information. The station may also perform implicit beamforming using NDP for sounding.
摘要:
Techniques to efficiently schedule and serve stations in a wireless network are described. An access point may aggregate stations with flows carrying traffic having similar characteristics, e.g., VoIP flows. The access point may schedule these stations together in an overall service period. The access point may serve each station in a respective service period within the overall service period. The access point may send a multi poll frame at the start of the overall service period to indicate the start time and/or service period for each station. Each station may decide to power down until its start time. The service periods for the stations may overlap one another. The service period for each station may cover an initial transmission as well as additional transmission and/or retransmission. If additional transmission and/or retransmission are not needed for a given station, then the next station may be served right away.
摘要:
Embodiments for bandwidth allocation methods, detecting interference with other systems, and/or redeploying in alternate bandwidth are described. Higher bandwidth channels may be deployed at channel boundaries (410), which are a subset of those for lower bandwidth channels (310), and may be restricted from overlapping. Interference may be detected (930) on primary, secondary, or a combination of channels, and may be detected in response to energy measurements (910) of the various channels. When interference is detected, a higher bandwidth Basic Service Set (BSS)(100) may be relocated to an alternate channel, or may have its bandwidth reduced to avoid interference. Interference may be detected based on energy measured on the primary or secondary channel, and/or a difference between the two. An FFT (1010) may be used in energy measurement in either or both of the primary and secondary channels. Stations may also monitor messages from alternate systems to make channel allocation decisions. Various other aspects are also presented.
摘要:
Embodiments for bandwidth allocation methods, detecting interference with other systems, and/or redeploying in alternate bandwidth are described. Higher bandwidth channels may be deployed at channel boundaries (410), which are a subset of those for lower bandwidth channels (310), and may be restricted from overlapping. Interference may be detected (930) on primary, secondary, or a combination of channels, and may be detected in response to energy measurements (910) of the various channels. When interference is detected, a higher bandwidth Basic Service Set (BSS)(100) may be relocated to an alternate channel, or may have its bandwidth reduced to avoid interference. Interference may be detected based on energy measured on the primary or secondary channel, and/or a difference between the two. An FFT (1010) may be used in energy measurement in either or both of the primary and secondary channels. Stations may also monitor messages from alternate systems to make channel allocation decisions. Various other aspects are also presented.
摘要:
Apparatuses and methodologies are described that coordinate multiple wireless communication protocols within a mobile device. A single mobile device can contain multiple communication components (e.g., a Bluetooth component, an IEEE 802.11b/g component). To prevent interference and possible loss of data, one communication component may be prevented from transmitting or receiving data packets while the other communication component is either transmitting or receiving. The components may be coordinated by a central controller located in the mobile device. Alternatively, the communication components may exchange messages to determine transmission or reception priority. In addition, one communication component may monitor the status of the other communication component to determine unused communication slots.