摘要:
The invention aims at preventing an occurrence of artefacts while reducing power consumption. A matrix addressing method for alternately driving pixels. The frame period of the images is formed by successively sequencing on a time series a plurality of block periods, the block periods each being composed of a first half block being a period for successively sequencing on a time series application timings of the pixel voltages for one or more row electrodes to be provided with one polarity, the second half block being a period for successively sequencing on a time series application timings of the pixel voltages for one or more row electrodes to be provided with the other polarity. Ones of even-numbered row electrodes and odd-numbered row electrodes in arrangement order on the display screen are selected in the first half block. The others spatially adjoining the ones are selected in the second half block. A row electrode selecting order in the first half block and a row electrode selecting order in the second half block during one frame period are made differed from orders in the corresponding half blocks during the other frame period, respectively, so as to mitigate block-period-base visual artefact.
摘要:
The invention aims at preventing an occurrence of artefacts while reducing power consumption. A matrix addressing method for alternately driving pixels. The frame period of the images is formed by successively sequencing on a time series a plurality of block periods, the block periods each being composed of a first half block being a period for successively sequencing on a time series application timings of the pixel voltages for one or more row electrodes to be provided with one polarity, the second half block being a period for successively sequencing on a time series application timings of the pixel voltages for one or more row electrodes to be provided with the other polarity. Ones of even-numbered row electrodes and odd-numbered row electrodes in arrangement order on the display screen are selected in the first half block. The others spatially adjoining the ones are selected in the second half block. A row electrode selecting order in the first half block and a row electrode selecting order in the second half block during one frame period are made differed from orders in the corresponding half blocks during the other frame period, respectively, so as to mitigate block-period-base visual artefact.
摘要:
The invention aims at providing a matrix addressing method and circuitry and display device, which enable power savings without as little degrading the legibility of content of an image as possible. A matrix addressing method for driving pixels arranged over a display area by signals supplied to row electrodes and column electrodes arranged to cross one another. Rich-gray-scale pixel information signals (#0 to #63) are generated in a predetermined number of levels of gray scale according to original pixel information signals, while poor-gray-scale pixel information signals (#0 and #63) are generated in a smaller number of levels of gray scale than the maximum number of levels of gray scale, according to original pixel information signals, and rich-gray-scale pixels driven by the rich-gray-scale pixel information signals (#0 to #63) and poor-gray-scale pixels driven by the poor-gray-scale pixel information signals (#0 and #63) are mixed and coexist discretely in at least a part of the display area in a predetermined mixing pattern to display the same image object in a predetermined mode.
摘要:
The invention aims at providing a matrix addressing method and circuitry and display device, which enable power savings without as little degrading the legibility of content of an image as possible. A matrix addressing method for driving pixels arranged over a display area by signals supplied to row electrodes and column electrodes arranged to cross one another. Rich-gray-scale pixel information signals (#0 to #63) are generated in a predetermined number of levels of gray scale according to original pixel information signals, while poor-gray-scale pixel information signals (#0 and #63) are generated in a smaller number of levels of gray scale than the maximum number of levels of gray scale, according to original pixel information signals, and rich-gray-scale pixels driven by the rich-gray-scale pixel information signals (#0 to #63) and poor-gray-scale pixels driven by the poor-gray-scale pixel information signals (#0 and #63) are mixed and coexist discretely in at least a part of the display area in a predetermined mixing pattern to display the same image object in a predetermined mode.
摘要:
An image display device having a voltage supplying device generating a first changing voltage for setting a transistor to an on-state and a second changing voltage for setting a transistor to an off-state to operate so as to establish a first supply mode, a second supply mode and a third supply mode to a plurality of gate buses for determining the corrected common electrode voltage.
摘要:
Column electrode driving circuit for a display device which reduces power consumption arid is capable of gray-scale displaying. The driving circuit include a gray-scale voltage producing system including amplifiers whose inputs are applied with a plurality of gray-scale voltages, respectively, and a selecting system for selecting and outputting any of output signals of the amplifiers for each pixel or each predetermined displayed unit in accordance with an image signal indicative of a gray-scale level for the pixel or displayed unit. The gray-scale voltage producing system causes any amplifiers of the amplifiers, which correspond to a predetermined number of predetermined gray scale levels, to be powered off and causing the other amplifiers to be powered on during a predetermined mode, the selecting system select any of output signals of the amplifiers powered on during the predetermined mode. A further construction based on potential divider circuits is also disclosed.
摘要:
A liquid crystal display (LCD) panel includes a first substrate, a second substrate, a common electrode driving circuit and a reverse gain circuit. A storage capacitor electrode is disposed on the first substrate. A common electrode is disposed on the second substrate which is disposed oppositely to the first substrate. The common electrode driving circuit is electrically connected with the common electrode and outputs a common voltage level signal to the common electrode. The reverse gain circuit is electrically connected to the storage capacitor electrode through a connecting terminal and outputs a reverse gain voltage signal to the common electrode according to a voltage signal of the storage capacitor electrode.
摘要:
A liquid crystal display (LCD) panel includes a first substrate, a second substrate, a common electrode driving circuit and a reverse gain circuit. A storage capacitor electrode is disposed on the first substrate. A common electrode is disposed on the second substrate which is disposed oppositely to the first substrate. The common electrode driving circuit is electrically connected with the common electrode and outputs a common voltage level signal to the common electrode. The reverse gain circuit is electrically connected to the storage capacitor electrode through a connecting terminal and outputs a reverse gain voltage signal to the common electrode according to a voltage signal of the storage capacitor electrode.
摘要:
An object of the invention is to provide a image display device in which the component cost and the equipment cost are reduced and a voltage level of a common electrode is easily adjustable to an optimum level. An image display device comprising a plurality of gate buses (G), a plurality of source buses (S), transistors (TFT) each of which is set to an on-state or an off-state in response to a voltage from a respective one of said gate buses (G) and supplies a voltage from said source bus (S) to a pixel electrode (2a) in said on-state, a common electrode (2c), and a corrected voltage supplying means for supplying a common electrode voltage (Vcom′) which has been corrected by a predetermined amount of correction (ΔVcom) to said common electrode (2c), wherein said corrected voltage supplying means generates a first changing voltage for setting said transistor to said on-state and a second changing voltage for setting said transistor to said off-state to operate so as to establish a first supply mode, a second supply mode and a third supply mode, said first supply mode in which said first changing voltage is supplied to a predetermined number of ones of said plurality of gate buses and said second changing voltage is supplied to remaining ones of said plurality of gate buses, said second supply mode in which said first changing voltage is supplied to a larger number of ones of said plurality of gate buses than said predetermined number of gate buses and said second changing voltage is supplied to remaining ones of said plurality of gate buses, and said third supply mode in which said first changing voltage is supplied to a smaller number of ones of said plurality of gate buses than said predetermined number of gate buses and said second changing voltage is supplied to remaining ones of said plurality of gate buses; and determines the corrected common electrode voltage (Vcom′).