摘要:
The present invention relates to a low thermal expansion Ni-base superalloy containing, in terms of mass %, C: 0.15% or less; Si: 1% or less; Mn: 1% or less; Cr: 5% or more but less than 20%; at least one of Mo, W and Re, in which Mo+½(W+Re) is 5% or more but less than 20%; W: 10% or less; Al: 0.1 to 2.5%; Ti: 0.10 to 0.95%; Nb+½Ta: 1.5% or less; B: 0.001 to 0.02%; Zr: 0.001 to 0.2%; Fe: 4.0% or less; and a balance of inevitable impurities and Ni, in which the total amount of Al, Ti, Nb and Ta is 2.0 to 6.5% in terms of atomic %. The low thermal expansion Ni-base superalloy of the present invention has a thermal expansion coefficient almost equal to that of 12 Cr ferritic steel, excellent high temperature strength, excellent corrosion and oxidation resistance, good hot-workability, and excellent weldability.
摘要:
The present invention relates to a low thermal expansion Ni-base superalloy containing, in terms of mass %, C: 0.15% or less; Si: 1% or less; Mn: 1% or less; Cr: 5% or more but less than 20%; at least one of Mo, W and Re, in which Mo+½(W+Re) is 5% or more but less than 20%; W: 10% or less; Al: 0.1 to 2.5%; Ti: 0.10 to 0.95%; Nb+½Ta: 1.5% or less; B: 0.001 to 0.02%; Zr: 0.001 to 0.2%; Fe: 4.0% or less; and a balance of inevitable impurities and Ni, in which the total amount of Al, Ti, Nb and Ta is 2.0 to 6.5% in terms of atomic %. The low thermal expansion Ni-base superalloy of the present invention has a thermal expansion coefficient almost equal to that of 12 Cr ferritic steel, excellent high temperature strength, excellent corrosion and oxidation resistance, good hot-workability, and excellent weldability.
摘要:
Disclosed is a heat resistant cast steel having not only good heat resistance but also good thermal fatigue resistance, which is suitable as the material for engine parts, particularly, such as exhaust gas manifold and turbo-housing, which are repeatedly exposed to such a high temperature as 900° C. or higher. The heat resistant cast steel comprises, by weight percent, C: 0.2-1.0%, Ni: 8.0-45.0%, Cr: 15.0-30.0%, W: up to 10% and Nb: 0.5-3.0%, provided that [%C]-0.13[%Nb]: 0.05-0.95%, the balance being Fe and inevitable impurities, and the cast structure contains dispersed therein, by atomic percent, MC-type carbides: 0.5-3.0% and M23C6-type carbides: 0.5-10.0%. The matrix of the steel is an austenitic phase mainly composed of Fe—Ni—Cr and the steel has the mean coefficient of thermal expansion in the range from room temperature to 1050° C. up to 20.0×10−4 and a tensile strength in the temperature range up to 1050° C. 50 MPa or higher.
摘要:
Provided is an extracting and separating device which includes: an ash reactor 12 for preparing a solution having a temperature of about 60° C. by using incineration ash containing sodium, potassium, and chlorine; a cooling crystallizer 16 for reducing the temperature of the solution to 30° C. to produce and separate potassium chloride; an absorption tower 11 for reacting the solution with carbon dioxide-containing gas to produce and separate sodium hydrogen carbonate; and a circulation path 13 for returning to the ash reactor 12 a liquid obtained after the production and separation of the potassium chloride in the cooling crystallizer 16 and the sodium hydrogen carbonate in the absorption tower 11.
摘要:
To provide a heat-resistant austenitic stainless steel having high-temperature strength and sag-resistance capable of resisting working temperatures of not less than 550° C. as well as being low in cost, and a production process thereof. The steel consistent with the present invention contains not more than 0.1 wt % C, less than 1.0 wt % Si, 1.0 wt % to 10.0 wt % Mn, not more than 0.03 wt % P, not more than 0.01 wt % S, 0.01 wt % to 3.0 wt % Cu, 7.0 wt % to 15.0 wt % Ni, 15.0 wt % to 25.0 wt % Cr, 0.5 wt % to 5.0 wt % Mo, not more than 0.03 wt % Al, 0.4 wt % to 0.8 wt % N, and the remainder substantially consisting of Fe and unavoidable impurities.
摘要:
A martensitic stainless steel of this invention, aimed at achieving excellent corrosion resistance and cold workability and a desirable level of toughness, while keeping the hardness equivalent to that of conventional martensitic stainless steel, which consists essentially of, in % by mass, C: 0.15-0.50%, Si: 0.05% or more and less than 0.20%, Mn: 0.05-2.0%, P: 0.03% or less, S: 0.03% or less, Cu: 0.05-3.0%, Ni:0.05-3.0%, Cr: 13.0-20.0%, Mo: 0.2-4.0%, V: 0.01-1.0%, Al: 0.030% or less, Ti: less than 0.020%, O: 0.020% or less, N: 0.30-0.80%, and the balance of Fe and inevitable impurities.
摘要:
A martensitic stainless steel of this invention, aimed at achieving excellent corrosion resistance and cold workability and a desirable level of toughness, while keeping the hardness equivalent to that of conventional martensitic stainless steel, which consists essentially of, in % by mass, C: less than 0.15%, Si: 0.05% or more and less than 0.20%, Mn: 0.05-2.0%, P: 0.03% or less, S: 0.03% or less, Cu: 0.05-3.0%, Ni: 0.05-3.0%, Cr: 13.0-20.0%, Mo: 0.2-4.0%, V: 0.01-1.0%, Al: 0.030% or less, Ti: less than 0.020%, O: 0.020% or less, N: 0.40-0.80%, and the balance of Fe and inevitable impurities.
摘要:
Disclosed is an austenitic stainless cast steel which has such a good heat resistance as can be used at a high temperature higher than 950° C. and a good machinability. The stainless cast steel consists essentially of, by weight %, C: 0.2-0.4%, Si: 0.5-2.0%, Mn: 0.5-2.0%, P: up to 0.10%, S: 0.04-0.2%, Ni: 8.0-42.0%, Cr: 15.0-28.0%, W: 0.5-7.0%, Nb: 0.5-2.0%, Al: up to 0.02%, Ti: up to 0.05%, N: up to 0.15%, Se: 0.001-0.50% and the balance of Fe and inevitable impurities.
摘要:
To provide a steel for plastic molding die which possesses enough hardness, wear resistance and corrosion resistance, and is excellent in high-precision processability and mirror polishing properties. The steel for a plastic molding die contains not more than 0.80 wt % C, not less than 0.01 wt % and less than 1.40 wt % Si, not less than 0.05 wt % and not more than 2.0 wt % Mn, not less than 0.005 wt % and not more than 1.00 wt % Ni, not less than 13.0 wt % and not more than 20.0 wt % Cr, not less than 0.20 wt % and not more than 4.0 wt % Mo+½ W, not less than 0.01 wt % and not more than 1.00 wt % V, not less than 0.36 wt % and not more than 0.80 wt % N, not more than 0.02 wt % O, not more than 0.80 wt % Al, and the remainder substantially including Fe and unavoidable impurities.