摘要:
A fuel cell having micro sensors is disclosed. It has a pair of bipolar plates and a catalytic portion. About each bipolar plate, it has an inner surface and an outer surface. There are a fluid inlet, a fluid outlet, a channel, one or more micro sensors and several signal lines disposed on this inner surface. This catalytic portion is disposed between two bipolar plates. So, it can detect the actual internal conditions in the fuel cell. There is no need to install extra micro sensors. And, the fuel cell stability and safety can be enhanced significantly.
摘要:
This invention is to introduce a manufacturing method of fuel cell with integration of catalytic layer and micro sensors, which comprises following steps: manufacturing multi-hole silicon layer step, generating catalytic layer step, forming insulation layer step, integrating micro sensors step, and finalizing step. With the function of gas-diffusion layer in the multi-hole silicon wafer and multiple catalytic grains evenly spread over the inner walls of flow-way holes of the silicon wafer, a great catalytic layer can be formed effectively. Further, micro sensors properly are integrated. This invention's merits include simple structure and capabilities of simultaneously detecting temperature and humidity. Plus, it can heat up internally for a fuel cell.
摘要:
A combined electrochemical machining and electropolishing micro-machining method includes the steps of (1) preparing step, (2) first-stage processing step, (3) second-stage processing step, and (4) finishing step. The apparatus includes an electrochemical machining solution container, an electropolishing solution container, a metal workpiece connecting with an anode, a mold-plate portion connecting with a cathode. Based on this arrangement, the metal workpiece is immersed in a first working fluid to conduct the electrochemical machining process and then to be immersed in a second working fluid to conduct the electropolishing process. So, the overall micro-machining speed is fast. It can improve the surface roughness significantly. It is suitable for extremely hard metal workpiece.
摘要:
The present disclosure provides a method for fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a first metal layer and a first silicon layer by an in-situ deposition process, patterning the first silicon layer to remove a portion overlying the second region, patterning the first metal layer using the patterned first silicon layer as a mask, and removing the patterned first silicon layer including applying a solution. The solution includes a first component having an [F—] concentration greater than 0.01 M, a second component configured to adjust a pH of the solution from about 4.3 to about 6.7, and a third component configured to adjust a potential of the solution to be greater than −1.4 volts.
摘要:
The present disclosure provides a method for fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a first metal layer and a first silicon layer by an in-situ deposition process, patterning the first silicon layer to remove a portion overlying the second region, patterning the first metal layer using the patterned first silicon layer as a mask, and removing the patterned first silicon layer including applying a solution. The solution includes a first component having an [F-] concentration greater than 0.01M, a second component configured to adjust a pH of the solution from about 4.3 to about 6.7, and a third component configured to adjust a potential of the solution to be greater than −1.4 volts.