摘要:
A diagnostic system for monitoring internal conditions inside a fuel cell includes a pair of bipolar plates, a gas diffusion layer, a central controller, and three or more sensors. Each bipolar plate contains a fuel gas channel. The central controller includes a computing unit and a display. Each sensor has a resistor portion, a capacitor portion, a common lead, a resistor line, and a capacitor line for detecting a voltage value, a resistance value, and a capacity value. The display shows out physical information detected by these sensors for diagnosing the fuel cell. The physical information includes voltage, resistance, capacity, temperature, humidity, flow velocity, and flow rate. In which, it can detect various physical information inside the fuel cell. It can monitor the internal conditions continuously and directly. Plus, it can prolong the product life of the fuel cell.
摘要:
This invention is to introduce a manufacturing method of fuel cell with integration of catalytic layer and micro sensors, which comprises following steps: manufacturing multi-hole silicon layer step, generating catalytic layer step, forming insulation layer step, integrating micro sensors step, and finalizing step. With the function of gas-diffusion layer in the multi-hole silicon wafer and multiple catalytic grains evenly spread over the inner walls of flow-way holes of the silicon wafer, a great catalytic layer can be formed effectively. Further, micro sensors properly are integrated. This invention's merits include simple structure and capabilities of simultaneously detecting temperature and humidity. Plus, it can heat up internally for a fuel cell.
摘要:
This invention relates to a diagnostic system for the internal status of a lithium battery. It includes a lithium battery unit, a plurality of sensor units and a control system. The lithium battery unit has a battery shell body and a lithium battery. The lithium battery is installed at the battery shell body. Each sensor unit comprises an electrically conductive wire and a sensor part. The internal part is disposed between the internal surface of the battery shell body and the lithium battery. The electrically conductive wire is connected respectively the sensor part and the control system so it can receive the data measured by the sensor part. The user can know the change inside the lithium battery. Therefore, it has the advantages and functions of real time monitoring, the enhancement of utilization safety, and the extension of product life.
摘要:
A composite bipolar plate for a polymer electrolyte membrane membrane fuel cell (PEMFC) is prepared as follows: a) melt compounding a polypropylene resin and graphite powder at 100-250° C. and 30-150 rpm to form a melt compounding material, the graphite powder content ranging from 50 wt % to 95 wt % based on the total weight of the graphite powder and the polypropylene resin, and the polypropylene resin being a homopolymer of propylene or a copolymer of propylene and ethylene, wherein 0.05-20 wt % carbon nanotubes, based on the weight of the polypropylene resin, are added during the melt compounding; and b) molding the melt compounding material from step a) to form a bipolar plate having a desired shaped at 100-250° C. and 500-4000 psi.
摘要:
A reinforced mesh structure containing bipolar plate for a polymer electrolyte membrane fuel cell (PEMFC) is prepared as follows: a) compounding vinyl ester and graphite powder to form bulk molding compound (BMC) material, the graphite powder content ranging from 60 wt % to 95 wt % based on the total weight of the graphite powder and vinyl ester, wherein 0.05-10 wt % reactive carbon nanotubes modified by acyl chlorination-amidization reaction, based on the weight of the vinyl ester resin, are added during the compounding; b) molding the BMC material from step a) with a metallic net being embedded in the molded BMC material to form a bipolar plates having a desired shaped at 80-200° C. and 500-4000 psi.
摘要:
A manufacturing method of fuel cell having micro sensors and polymer layers is disclosed. It include the following steps of: (1) depositing first polymer layer step, (2) first lithographic processing step, (3) depositing chromium layer step, (4) depositing gold layer step, (5) removing first photo-resist layer step, (6) depositing second polymer layer step, (7) second lithographic processing step, (8) plasma etching step, (9) removing second photo-resist layer step, and (10) complete step. About this invention, the polymer layers can protect the micro sensors. The micro sensors can be installed at a specific location in the flow channel. The entire manufacturing cost is lowered.
摘要:
A surface film structure of a metallic bipolar plate for fuel cells and a method for producing the same are provided. The method is firstly to perform flow channel machining on a bipolar plate, then to surface grind the plate so as to remove any oxide film on the plate, to degrease the plate by dipping the plate into an alkaline solution for ultrasonic cleaning, to remove from the alkaline solution and de-ionize the plate by de-ion water, again to dip the plate into a nitric acid, to de-ionize the plate after being removed from the nitric acid, to dip the plate into pure water for further ultrasonic cleaning, and finally to arrange the plate removed from the pure water into an ECM tank for forming a surface film on the plate with both chemical and electrochemical stability. The surface film including a Cr composition of 40˜75%, an Fe composition of 10˜30%, and an Ni composition of 15˜30% provides the metallic bipolar plate superior properties in corrosion-resistance, conductivity, and roughness. For a nano-structure is also provided to the surface film, the plate is then hydrophobic and self-cleaning, and thus the surface stability and flowability can be substantially increased. Further, for the Cr composition in the surface film has been particularly increased, the corrosion resistance of the metallic bipolar plate is greatly enhanced.
摘要:
A multi-stationed continuous electro-polishing system includes an electrolysis tank, a driving mechanism, electrode plates and a power supply. The electrolysis tank is filled with electrolyzing liquid. The driving mechanism is placed in the electrolysis tank for driving a metal strip into and out of the electrolysis tank. Each of the electrode plates is placed at an adjustable gap from the metal strip in the electrolysis tank. The power supply includes a positive electrode connected to the metal strip and a negative electrode connected to all of the electrode plates.
摘要:
A manufacturing method of fuel cell having micro sensors and polymer layers is disclosed. It include the following steps of: (1) depositing first polymer layer step, (2) first lithographic processing step, (3) depositing chromium layer step, (4) depositing gold layer step, (5) removing first photo-resist layer step, (6) depositing second polymer layer step, (7) second lithographic processing step, (8) plasma etching step, (9) removing second photo-resist layer step, and (10) complete step. About this invention, the polymer layers can protect the micro sensors. The micro sensors can be installed at a specific location in the flow channel. The entire manufacturing cost is lowered.
摘要:
A micro reactor having micro flow-guiding blocks includes a first gas flow channel, a second gas flow channel and a catalytic converter. There are several flow-guiding portions disposed on the first gas flow channel. Each flow-guiding portion has micro flow-guiding blocks, flow-impact recesses, and catalytic portions. The function of the micro flow-guiding block is to guide a flowing direction of the flow toward the catalytic portion on the flow-impact recess in order to increase a possibility of contacting and chemical reaction with the catalytic portion. So, guiding the flow direction toward the catalytic portion can increase the overall reaction efficiency. More turbulence is generated to obtain a better mixing. Plus, its structure is simple.