摘要:
Methods of fabricating porous silicon by electrochemical etching and subsequent coating with a passivating agent process are provided. The coated porous silicon can be used to make anodes and batteries. It is capable of alloying with large amounts of lithium ions, has a capacity of at least 1000 mAh/g and retains this ability through at least 60 charge/discharge cycles. A particular pSi formulation provides very high capacity (3000 mAh/g) for at least 60 cycles, which is 80% of theoretical value of silicon. The Coulombic efficiency after the third cycle is between 95-99%. The very best capacity exceeds 3400 mAh/g and the very best cycle life exceeds 240 cycles, and the capacity and cycle life can be varied as needed for the application.
摘要:
In some embodiments, the present invention provides novel methods of preparing porous silicon films and particles for lithium ion batteries. In some embodiments, such methods generally include: (1) etching a silicon material by exposure of the silicon material to a constant current density in a solution to produce a porous silicon film over a substrate; and (2) separating the porous silicon film from the substrate by gradually increasing the electric current density in sequential increments. In some embodiments, the methods of the present invention may also include a step of associating the porous silicon film with a binding material. In some embodiments, the methods of the present invention may also include a step of splitting the porous silicon film to form porous silicon particles. Additional embodiments of the present invention pertain to anode materials derived from the porous silicon films and porous silicon particles.In some embodiments, the present invention provides novel methods of preparing porous silicon films and particles for lithium ion batteries. In some embodiments, such methods generally include: (1) etching a silicon material by exposure of the silicon material to a constant current density in a solution to produce a porous silicon film over a substrate; and (2) separating the porous silicon film from the substrate by gradually increasing the electric current density in sequential increments. In some embodiments, the methods of the present invention may also include a step of associating the porous silicon film with a binding material. In some embodiments, the methods of the present invention may also include a step of splitting the porous silicon film to form porous silicon particles. Additional embodiments of the present invention pertain to anode materials derived from the porous silicon films and porous silicon particles.
摘要:
Embodiments of the present disclosure pertain to methods of preparing porous silicon particulates by: (a) electrochemically etching a silicon substrate, where electrochemical etching comprises exposure of the silicon substrate to an electric current density, and where electrochemical etching produces a porous silicon film over the silicon substrate; (b) separating the porous silicon film from the silicon substrate, where the separating comprises a gradual increase of the electric current density in sequential increments; (c) repeating steps (a) and (b) a plurality of times; (d) electrochemically etching the silicon substrate in accordance with step (a) to produce a porous silicon film over the silicon substrate; (e) chemically etching the porous silicon film and the silicon substrate; and (f) splitting the porous silicon film and the silicon substrate to form porous silicon particulates. Further embodiments of the present disclosure pertain to the formed porous silicon particulates and anode materials that contain them.
摘要:
In some embodiments, the present invention provides methods of preparing porous silicon films and particles by: (1) etching a silicon material by exposure of the silicon material to a constant current density in a solution (e.g., hydrofluoric acid solution) to produce a porous silicon film over a substrate; and (2) separating the porous silicon film from the substrate by gradually increasing the electric current density in sequential increments. The methods of the present invention may also include a step of associating the porous silicon film with a binding material, such as polyacrylonitrile (PAN). The methods of the present invention may also include a step of splitting the porous silicon film to form porous silicon particles. Additional embodiments of the present invention pertain to methods of preparing porous silicon particles and anode materials that may be derived from the porous silicon films and porous silicon particles of the present invention.
摘要:
Embodiments of the present disclosure pertain to methods of preparing porous silicon particulates by: (a) electrochemically etching a silicon substrate, where electrochemical etching comprises exposure of the silicon substrate to an electric current density, and where electrochemical etching produces a porous silicon film over the silicon substrate; (b) separating the porous silicon film from the silicon substrate, where the separating comprises a gradual increase of the electric current density in sequential increments; (c) repeating steps (a) and (b) a plurality of times; (d) electrochemically etching the silicon substrate in accordance with step (a) to produce a porous silicon film over the silicon substrate; (e) chemically etching the porous silicon film and the silicon substrate; and (f) splitting the porous silicon film and the silicon substrate to form porous silicon particulates. Further embodiments of the present disclosure pertain to the formed porous silicon particulates and anode materials that contain them.
摘要:
In some embodiments, the present invention provides novel methods of preparing porous silicon films and particles for lithium ion batteries. In some embodiments, such methods generally include: (1) etching a silicon material by exposure of the silicon material to a constant current density in a solution to produce a porous silicon film over a substrate; and (2) separating the porous silicon film from the substrate by gradually increasing the electric current density in sequential increments. In some embodiments, the methods of the present invention may also include a step of associating the porous silicon film with a binding material. In some embodiments, the methods of the present invention may also include a step of splitting the porous silicon film to form porous silicon particles. Additional embodiments of the present invention pertain to anode materials derived from the porous silicon films and porous silicon particles.