摘要:
A method for the computer-aided control of a technical system is provided. A recurrent neuronal network is used for modeling the dynamic behaviour of the technical system, the input layer of which contains states of the technical system and actions carried out on the technical system, which are supplied to a recurrent hidden layer. The output layer of the recurrent neuronal network is represented by an evaluation signal which reproduces the dynamics of technical system. The hidden states generated using the recurrent neural network are used to control the technical system on the basis of a learning and/or optimization method.
摘要:
A method for the computer-supported generation of a data-driven model of a technical system, in particular of a gas turbine or wind turbine, based on training data is disclosed. The data-driven model is preferably learned in regions of training data having a low data density. According to the invention, it is thus ensured that the data-driven model is generated for information-relevant regions of the training data. The data-driven model generated is used in a particularly preferred embodiment for calculating a suitable control and/or regulation model or monitoring model for the technical system. By determining optimization criteria, such as low pollutant emissions or low combustion dynamics of a gas turbine, the service life of the technical system in operation can be extended. The data model generated by the method according to the invention can furthermore be determined quickly and using low computing resources, since not all training data is used for learning the data-driven model.
摘要:
A method for the computer-supported generation of a data-driven model of a technical system, in particular of a gas turbine or wind turbine, based on training data is disclosed. The data-driven model is preferably learned in regions of training data having a low data density. According to the invention, it is thus ensured that the data-driven model is generated for information-relevant regions of the training data. The data-driven model generated is used in a particularly preferred embodiment for calculating a suitable control and/or regulation model or monitoring model for the technical system. By determining optimization criteria, such as low pollutant emissions or low combustion dynamics of a gas turbine, the service life of the technical system in operation can be extended. The data model generated by the method according to the invention can furthermore be determined quickly and using low computing resources, since not all training data is used for learning the data-driven model.
摘要:
A wind turbine rotor blade is equipped with an air chamber and equipped via the air chamber to route a modulation beam out of the rotor blade such that the air current along the rotor blade is changed. Thereby the laminar current is changed into a turbulent current on the one hand and its detachment and on the other hand its recreation is achieved in order to produce the laminar current. The control may occur via electrostatic actuators via a learnable control strategy based on neural forecasts, which take the complexity of the non-linear system into account and allow for the plurality of influencing factors. The stress on the rotor blades may be reduced, resulting in longer service life and reduced maintenance costs, a higher level of efficiency or quieter operation.
摘要:
A wind turbine rotor blade is equipped with an air chamber and equipped via the air chamber to route a modulation beam out of the rotor blade such that the air current along the rotor blade is changed. Thereby the laminar current is changed into a turbulent current on the one hand and its detachment and on the other hand its recreation is achieved in order to produce the laminar current. The control may occur via electrostatic actuators via a learnable control strategy based on neural forecasts, which take the complexity of the non-linear system into account and allow for the plurality of influencing factors. The stress on the rotor blades may be reduced, resulting in longer service life and reduced maintenance costs, a higher level of efficiency or quieter operation.
摘要:
A method for the computer-assisted exploration of states of a technical system is provided. The states of the technical system are run by carrying out an action in a respective state of the technical system, the action leading to a new state. A safety function and a feedback rule are used to ensure that a large volume of data of states and actions is run during exploration and that at the same time no inadmissible actions occur which could lead directly or indirectly to the technical system being damaged or to a defective operating state. The method allows a large number of states and actions relating to the technical system to be collected and may be used for any technical system, especially the exploration of states in a gas turbine. The method may be used both in the real operation and during simulation of the operation of a technical system.
摘要:
A method for computer-aided control of any technical system is provided. The method includes two steps, the learning of the dynamic with historical data based on a recurrent neural network and a subsequent learning of an optimal regulation by coupling the recurrent neural network to a further neural network. The recurrent neural network has a hidden layer comprising a first and a second hidden state at a respective time point. The first hidden state is coupled to the second hidden state using a matrix to be learned. This allows a bottleneck structure to be created, in that the dimension of the first hidden state is smaller than the dimension of the second hidden state or vice versa. The autonomous dynamic is taken into account during the learning of the network, thereby improving the approximation capacity of the network. The technical system includes a gas turbine.
摘要:
A method for computer-aided closed and/or open-loop control of a technical system is provided. A first value of an output quantity is predicted on a data-based model at a current point in time. A second value of the output quantity is determined from an analytical model. The state of the technical system at the current point is assigned a confidence score in the correctness of prediction of the data-based model. A third value of the output quantity is determined from the first and second value as a function of the confidence score for controlling the technical system. A suitable value for the output quantity can be derived from the analytical model even for regions of the technical system in which the quality of prediction of the data-based model is low because of a small set of training data. The technical systems can be turbines, such as gas turbines.
摘要:
A method for computer-aided closed and/or open-loop control of a technical system is provided. A first value of an output quantity is predicted on a data-based model at a current point in time. A second value of the output quantity is determined from an analytical model. The state of the technical system at the current point is assigned a confidence score in the correctness of prediction of the data-based model. A third value of the output quantity is determined from the first and second value as a function of the confidence score for controlling the technical system. A suitable value for the output quantity can be derived from the analytical model even for regions of the technical system in which the quality of prediction of the data-based model is low because of a small set of training data. The technical systems can be turbines, such as gas turbines.
摘要:
A method for the computer-aided regulation and/or control of a technical system is provided. In the method, first a simulation model of the technical system is created, to which subsequently a plurality of learning and/or optimization methods are applied. Based on the results of these methods, the method best suited for the technical system is selected. The selected learning and/or optimization method is then used to regulate the technical system. Based on the simulation model, the method can thus be used to train an initial controller, which can be used as an intelligent controller, and is not modified during further regulation of the technical system.