摘要:
The present disclosure relates to coating a carrier component by means of cold gas dynamic spraying. For example, a method for coating a carrier component may include: laying a mask with an opening on the component; depositing a material through the opening to completely fill up the mask opening; removing any material located above the upper side to form a flat surface even with the upper side of the mask; laying a second mask on the first mask; depositing the material again; removing any deposited material located above the upper side of the second mask to form a flat surface even with the upper side of the second mask; repeating layers of additional masks and material deposition until the deposited material reaches a required thickness on the carrier component; and after completion of the coating to the required thickness, removing the masks.
摘要:
Various embodiments of the teachings herein include methods for producing an object layer-by-layer using a powder-based 3D printing method by selective fusing of layers of a powder in a powder bed with a selective laser melting process or selective electron beam melting process. At least two successive layers are part of a group. An example method includes, for each group: providing a first layer of the powder; fusing a part of the first layer with first exposure vectors parallel to one another and at a defined spacing; providing a second layer of powder; and fusing a part of the second layer with second exposure vectors arranged at an offset parallel to the first exposure vectors. The exposure vectors of successive groups are rotated by an angle relative to one another.
摘要:
Various embodiments may include a method for the generative manufacturing of a component on a building platform comprising: applying particles of a building material layer by layer to the building platform and then to the component under construction; fusing the applied particles with an energy beam; and heating the component under construction with a heating device associated with the building platform. A reference temperature Tr for each layer produced and a tolerance range for the reference temperature Tr are defined. A heating power of the heating device is lowered as sequential layers are fused to the extent that the tolerance range for a reference temperature Tr is maintained in a last layer produced.
摘要:
Various embodiments include a method for additive manufacturing of a building structure on using a simulation comprising: accessing a data set for the building structure describing the building structure in layers; calculating a global heat development in previous layers based a building history and heat input by an energy beam; determining a local heat development in a vicinity of the heat input; determining the process control based on the global and the local heat development; loading correction measures from a database; and assigning the correction measures locally to individual vectors of a tool path of the energy beam. At least one mass integral is calculated for individual vectors of the tool path. The measures are determined on the basis of a comparison of the calculated mass integral with mass integrals stored in the database.
摘要:
A component is produced in layers by laser melting. A molten pool is created in a bed of powder by a working laser beam. Further auxiliary laser beams are set to a power density that merely slows down the cooling of the material in one zone, but do not cause any renewed melting. In this way, the cooling rate of the microstructure can be set so that an advantageous structural formation develops. This allows for example the mechanical properties of the component produced to be advantageously improved without downstream heat treatments.
摘要:
A method for charging and discharging a heat accumulator is provided. A system by which the method can be performed is also provided. By means of the heat accumulator, it is possible to convert overcapacities of wind turbines, for example, into a charging circuit as heat in the accumulator by a compressor. If necessary, electricity can be stored into the network by a turbine and a generator, wherein the heat accumulator is discharged. The charging circuit and the discharging circuit are operated by a Rankine cycle, wherein for example river water is available as a reservoir for heat exchangers in order to cause evaporation of the working medium in the charging circuit and condensation of the working medium in the discharging circuit.
摘要:
A system for storing and outputting thermal energy and a method for operating the system are provided. The system operates according to the Brayton cycle, wherein a heat accumulator is charged by a compressor and a cold accumulator is charged by turbines. The cycle is reversed for discharging. In addition, the cold accumulator supplies a cooling circuit, which provides the cooling for a superconducting generator by a cooling unit. A favorable generator weight can thereby be advantageously achieved in particular for wind turbines, because the generators are limited regarding the weight thereof due to being housed in the nacelle of the wind power plant. Thus, advantageously higher power can be converted in the wind power plant.
摘要:
Various embodiments include a heat sink comprising: a base plate with an assembly surface for an electronic component; and a cooling structure bonded to the base plate increasing a surface area of the heat sink. The base plate comprises a metal-ceramic composite with a ceramic phase and a metallic phase. The cooling structure comprises a metal. A bond between the cooling structure and the base plate consists of a purely metallic bond between the cooling structure and the metallic phase of the base plate.
摘要:
Various embodiments may include a method for the generative manufacturing of a component on a building platform comprising: applying particles of a building material layer by layer to the building platform and then to the component under construction; fusing the applied particles with an energy beam; and heating the component under construction with a heating device associated with the building platform. A reference temperature Tr for each layer produced and a tolerance range for the reference temperature Tr are defined. A heating power of the heating device is lowered as sequential layers are fused to the extent that the tolerance range for a reference temperature Tr is maintained in a last layer produced.
摘要:
The present disclosure relates to powder-bed-based additive manufacturing methods, in which a component is produced layer by layer in a build-up process by local melting of particles in a powder bed. For example, a powder-bed-based additive manufacturing method may include: producing a component layer by layer in a build-up process by local melting of particles in a powder bed; interrupting the build-up process after a layer has been completed; post-treating a surface of the component by laser peening, wherein compressive stresses are generated at the surface of the layer that has been completed; and restarting the build-up process for producing a next layer. An installation for the powder-bed-based additive manufacturing method may include an application apparatus for an ablation medium.