Abstract:
A combustion chamber with a jacket arranged around a principal axis of the combustion chamber, a ceramic tube that is arranged inside the jacket, wherein an intermediate layer is arranged between the jacket and the ceramic tube. The jacket is at least partially conical. The ceramic tube is under axial stress in the jacket along the principal axis. The ceramic tube is an assembly of multiple heat shield segments. The heat shield segments each have a hot side that is designed to come into contact with a hot medium, a cold side that is opposite the hot side and is oriented toward the jacket, and a circumferential rim between the hot side and the cold side. In the cold state, individual heat shield segments of a segment row have, on the rim, bearing surfaces that the adjoin the cold side and gaps that open toward the hot gas side.
Abstract:
A method for operating a gas turbine below the nominal power includes: determining a lower power threshold value of the gas turbine which causes the gas turbine to leave a CO-emission-compliant partial load range of the gas turbine; providing a specified threshold value for output gas turbine power, wherein the specified threshold value is less than the nominal power of the gas turbine; and operating the gas turbine at an output gas turbine power above the specified threshold value at a constant exhaust gas temperature, wherein the inlet guide blades of a compressor of the gas turbine are closed further in order to reduce the output gas turbine power. A sufficiently large valve is selected for the specified threshold value so that increases of the primary zone temperature, combustion temperature, and exhaust temperature extend over a CO-emission-compliant partial load range of the gas turbine that is as large as possible.
Abstract:
A gas turbine has a compressor providing compressed air, a combustion chamber provided with a burner, and an expansion turbine, wherein a bypass flow channel is also provided designed to supply compressed air past the burner and to supply a hot gas flow generated in the combustion chamber during operation of the gas turbine. The opening cross section of the bypass flow channel can be adjusted, and an adjustment unit is designed to adjust the opening cross section of the bypass flow channel such that the modification speed of the opening cross section is selected such that the relative combustion chamber pressure drop or a material temperature of the combustion chamber is substantially constant, in particular that the relative combustion chamber pressure drop or the material temperature of the combustion chamber does not vary by more than 10%.
Abstract:
A gas turbine includes an intake tract and a compressor having a compressor flow channel. The compressor further includes an inlet guide vane row positioned in the compressor flow channel having inlet guide vanes that can be adjusted. The gas turbine has an icing sensor unit having at least one sensor arranged between a first compressor blade row and a first compressor guide vane row. The first compressor blade row is thereby arranged in the compressor flow channel directly downstream of the inlet guide vane row, and the first compressor guide vane row is arranged directly downstream of the first compressor blade row. A method detects an imminent icing of the compressor, and the compressor is safeguarded therefrom such that at least inlet guide vanes of the inlet guide vane row are adjusted such that the acceleration of an intake air mass flow is reduced.
Abstract:
A method for operating a gas turbine below the nominal power includes: determining a lower power threshold value of the gas turbine which causes the gas turbine to leave a CO-emission-compliant partial load range of the gas turbine; providing a specified threshold value for output gas turbine power, wherein the specified threshold value is less than the nominal power of the gas turbine; and operating the gas turbine at an output gas turbine power above the specified threshold value at a constant exhaust gas temperature, wherein the inlet guide blades of a compressor of the gas turbine are closed further in order to reduce the output gas turbine power. A sufficiently large valve is selected for the specified threshold value so that increases of the primary zone temperature, combustion temperature, and exhaust temperature extend over a CO-emission-compliant partial load range of the gas turbine that is as large as possible.
Abstract:
A method for operating a gas turbine below its rated power, in which CO emissions in the exhaust gas of the gas turbine increase with a reduction of the output gas turbine power, wherein, if a predefined threshold value, which can be selected as desired, for the CO emissions is reached or if a predefined threshold value, specified in relative or absolute terms, for the output gas turbine power is undershot, the combustion temperature in the combustion chamber of the gas turbine is increased. To operate the gas turbine with low emissions, for a constant power output, the exhaust-gas temperature increase generated at the outlet of the gas turbine as a result of the combustion temperature increase is at least partially compensated through the addition of a liquid or vaporous medium.
Abstract:
A heat shield element for a heat shield has a support structure. The heat shield element includes a hot side which can be exposed to hot gas, a cold side opposite the hot side, and peripheral sides connecting the hot side to the cold side. The heat shield element can be fastened to the support structure of the heat shield with the cold side facing the support structure and has a height running vertically to the cold side. The height of the heat shield element increases in a rising direction, the rising portion of the heat shield element running in the rising direction substantially up to at least one peripheral side or up to a projection that extends the hot side over the base surface of the cold side.
Abstract:
A gas turbine includes an intake tract and a compressor having a compressor flow channel. The compressor further includes an inlet guide vane row positioned in the compressor flow channel having inlet guide vanes that can be adjusted. The gas turbine has an icing sensor unit having at least one sensor arranged between a first compressor blade row and a first compressor guide vane row. The first compressor blade row is thereby arranged in the compressor flow channel directly downstream of the inlet guide vane row, and the first compressor guide vane row is arranged directly downstream of the first compressor blade row. A method detects an imminent icing of the compressor, and the compressor is safeguarded therefrom such that at least inlet guide vanes of the inlet guide vane row are adjusted such that the acceleration of an intake air mass flow is reduced.
Abstract:
A gas turbine has a compressor providing compressed air, a combustion chamber provided with a burner, and an expansion turbine, wherein a bypass flow channel is also provided designed to supply compressed air past the burner and to supply a hot gas flow generated in the combustion chamber during operation of the gas turbine. The opening cross section of the bypass flow channel can be adjusted, and an adjustment unit is designed to adjust the opening cross section of the bypass flow channel such that the modification speed of the opening cross section is selected such that the relative combustion chamber pressure drop or a material temperature of the combustion chamber is substantially constant, in particular that the relative combustion chamber pressure drop or the material temperature of the combustion chamber does not vary by more than 10%.
Abstract:
A jet burner has a hot-gas side, which faces toward a combustion chamber during operation, and a cold-gas side, which faces away from a combustion chamber, including a base plate on which there are arranged multiple jet nozzles, wherein the base plate has at least one cooling duct, wherein the at least one cooling duct issues into a burner stage which comprises a pilot burner arranged on the base plate.