摘要:
A system for efficiently generating device-dependent anaglyph images includes a display device for presenting anaglyph images in a three-dimensional format. An anaglyph converter includes a conversion manager that interacts with system users to perform configuration procedures for generating anaglyph images. The configuration procedures are utilized to define one or more imaging parameters that are dependent upon imaging characteristics of said display device. The imaging parameters may include ghosting reduction parameters and color adjustment parameters. A processor device typically controls the conversion manager to perform the anaglyph image generation procedures.
摘要:
A method for converting a 2D image into a 3D image includes receiving the 2D image; determining whether the received 2D image is a portrait, wherein the portrait can be a face portrait or a non-face portrait; if the received 2D image is determined to be a portrait, creating a disparity between a left eye image and a right eye image based on a local gradient and a spatial location; generating the 3D image based on the created disparity; and outputting the generated 3D image.
摘要:
A method for converting a 2D image into a 3D image includes receiving the 2D image; analyzing content of the received 2D image; determining a 2D-to-3D image conversion method based on a result of the content analysis; generating the 3D image by applying the determined method to the received 2D image; and providing the generated 3D image.
摘要:
A method for rendering 3D content in a safe mode includes receiving images to be rendered in a 3D format, and detecting, in the received images, at least one image having a 3D content creation or conversion error that creates an uncomfortable 3D effect to a user. The method may also include transitioning to a safe mode, under which 3D enhancement is performed to the detected at least one image to avoid the uncomfortable 3D effect, and rendering the 3D enhanced image for display.
摘要:
A method for converting a 2D image into a 3D image includes receiving the 2D image; analyzing content of the received 2D image; determining a 2D-to-3D image conversion method based on a result of the content analysis; generating the 3D image by applying the determined method to the received 2D image; and providing the generated 3D image.
摘要:
A method for converting a 2D image into a 3D image includes receiving the 2D image; determining whether the received 2D image is a portrait, wherein the portrait can be a face portrait or a non-face portrait; if the received 2D image is determined to be a portrait, creating a disparity between a left eye image and a right eye image based on a local gradient and a spatial location; generating the 3D image based on the created disparity; and outputting the generated 3D image.
摘要:
A method for generating a depth map for a 2D image includes receiving the 2D image; analyzing content of the received 2D image; determining a depth map based on a result of the content analysis; refining the determined depth map using an edge-preserving and noise reducing smoothing filter; and providing the refined depth map.
摘要:
A method for generating a depth map for a 2D image includes receiving the 2D image; analyzing content of the received 2D image; determining a depth map based on a result of the content analysis; refining the determined depth map using an edge-preserving and noise reducing smoothing filter; and providing the refined depth map.
摘要:
A method for generating a depth map for a 2D image and video includes receiving the 2D image and video; defining a plurality of object classes; analyzing content of the received 2D image and video; calculating probabilities that the received 2D image belongs to the object classes; and determining a final depth map based on a result of the analyzed content and the calculated probabilities for the object classes.
摘要:
A method of determining the point-spread function (PSF) of an imaging system includes the steps of capturing image data, establishing an idealized source spot, establishing a functional form model, subtracting the captured image from the estimated image equation and determining a metric that measures the fit of the estimated image to the captured image. The functional form model may include both diffraction and aberration and stray light. The functional form model may be optimized to reduce the metric to an acceptable level.