Abstract:
A touch detection method for a capacitive sensing device is disclosed. The capacitive sensing device is utilized for detecting capacitance variance of a panel, and a variable capacitor includes a first end electrically coupled to the panel. The touch detection method includes simultaneously providing a first clock signal to a second end of the variable capacitor and providing a second clock signal to the panel; determining a touched region of the panel according to a voltage variance of the first end of the variable capacitor; and generating an output signal utilized for indicating the touched region. Notably, the first clock signal and the second clock signal have opposite phases against each other.
Abstract:
The present disclosure provides a capacitor voltage information sensing circuit. The capacitor voltage information sensing circuit includes a mixer and an analog filter. The mixer includes a first input terminal for receiving a reference signal, a second input terminal for receiving a voltage signal, the voltage signal includes capacitor voltage information and a noise when a touch occurs, a first output terminal for outputting a first differential signal according to the voltage signal and the reference signal, and a second output terminal for outputting a second differential signal according to the voltage signal and the reference signal. The analog filter is coupled to the mixer for generating a first low-frequency signal and a second low-frequency signal according to the first differential signal and second differential signal.
Abstract:
The present invention provides a touch module, which comprises a touch panel, an analog front end circuit, and a microcontroller circuit. The touch panel generates a plurality of sensing signals. The analog front end circuit is coupled to the touch panel, generates a state signal, and generates a plurality of touch detecting signals according to the plurality of sensing signals. The microcontroller circuit is coupled to the analog front end circuit, generates one or more touch location signal according to the plurality of touch detecting signals, and enters the next switching state according to the state signal when the switching state is changed.
Abstract:
A calibration method for a capacitive sensing device is disclosed. The capacitive sensing device is capable of operating in a self-sensing mode or a mutual-sensing mode. The calibration method includes detecting a capacitance change of a panel in the self-sensing mode to generate a self-sensing output signal, detecting a capacitance change of the panel in the mutual-sensing mode to generate a mutual-sensing output signal, calculating a self-sensing difference between the self-sensing output signal and a self-sensing static parameter, and calibrating the mutual-sensing output signal according to the mutual-sensing output signal and the self-sensing difference.
Abstract:
The present invention relates to an analog-to-digital converting circuit with temperature sensing and the electronic device thereof. The present invention uses a first impedance device to receive a reference voltage and produces an input current according to a temperature. An analog-to-digital converting unit is coupled to the first impedance device and produces a digital output signal according to the input current. Thereby, according to the present invention, by integrating the first impedance device into the analog-to-digital converting circuit, the circuit area and the power consumption can be lowered, which further reduces the cost and improves the accuracy of temperature sensing.
Abstract:
The present invention relates to a driving circuit, the touch device thereof, the touch module thereof, and the method for manufacturing the same. The present invention comprises a control circuit, a scan circuit, a touch panel, and a detection circuit. The control circuit generates an input signal. The scan circuit comprises a plurality of signal generating circuits, which receive the input signal, generate a plurality of scan signals according to the input signal, and output the plurality of scan signals to the plurality of scan electrodes of the touch panel. The detection circuit detects the touch panel according to the plurality of scan signals and outputs a detection signal to the control circuit to let the control circuit know at least a touch point of the touch panel being touched.
Abstract:
A calibration method for a capacitive sensing device is disclosed. The capacitive sensing device is capable of operating in a self-sensing mode or a mutual-sensing mode. The calibration method includes detecting a capacitance change of a panel in the self-sensing mode to generate a self-sensing output signal, detecting a capacitance change of the panel in the mutual-sensing mode to generate a mutual-sensing output signal, calculating a self-sensing difference between the self-sensing output signal and a self-sensing static parameter, and calibrating the mutual-sensing output signal according to the mutual-sensing output signal and the self-sensing difference.
Abstract:
A frequency selecting module for a touch system includes a storage unit, for storing a sum of at least one of a plurality of sensing signals of a plurality sensing channels in the touch system; a spectrum calculating unit, for transforming the sum of the at least one of the plurality of sensing signals stored in the storage unit to generate a spectrum data and storing the spectrum data to the storage unit; and a selecting unit, for generating an adjusting signal according to the spectrum data to select one of a plurality of operation frequencies as a working frequency of the plurality of sensing signals.
Abstract:
A frequency selecting module for a touch system includes a storage unit, for storing a sum of at least one of a plurality of sensing signals of a plurality sensing channels in the touch system; a spectrum calculating unit, for transforming the sum of the at least one of the plurality of sensing signals stored in the storage unit to generate a spectrum data and storing the spectrum data to the storage unit; and a selecting unit, for generating an adjusting signal according to the spectrum data to select one of a plurality of operation frequencies as a working frequency of the plurality of sensing signals.
Abstract:
The present disclosure provides a capacitor voltage information sensing circuit. The capacitor voltage information sensing circuit includes a mixer and an analog filter. The mixer includes a first input terminal for receiving a reference signal, a second input terminal for receiving a voltage signal, the voltage signal includes capacitor voltage information and a noise when a touch occurs, a first output terminal for outputting a first differential signal according to the voltage signal and the reference signal, and a second output terminal for outputting a second differential signal according to the voltage signal and the reference signal. The analog filter is coupled to the mixer for generating a first low-frequency signal and a second low-frequency signal according to the first differential signal and second differential signal.