Abstract:
A system for mounting a photovoltaic array onto short sections of mounting rails such that a section of mounting rail is only installed fewer than all the photovoltaic modules in the array. A single section of mounting rail may support one, two or three photovoltaic modules depending on it's length and position respect to the edge of each module frame.
Abstract:
A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.
Abstract:
A photovoltaic mounting system for tile roofs is disclosed. In one embodiment, mounting bracket is attached to a roof deck and passes through a flashing support and flexible flashing that mimics the contour of the adjacent roof tiles. In other embodiments, a tile hook passes through partial or full tile replacement flashing. A plug or other structure blocks the space around the tile hook preventing the ingress of pests and debris under the flashing and surrounding tiles. Additional photovoltaic module mounting hardware, including sections of rails and frame mounts are attached either the mounting bracket or tile hook.
Abstract:
A bracket for installing photovoltaic modules on a tile roof. The bracket can have a base portion adapted to sit on a flat roof surface below a tile. A pair of curved portions above the base portion can be supported by a pair of vertical portions. A riser portion can be connected to the pair of curved portion and rising in a direction perpendicular to a roof surface. A flange can be connected to and be perpendicular to the riser portion and parallel to the base.
Abstract:
A photovoltaic mounting system for tile roofs is disclosed. In one embodiment, mounting bracket is attached to a roof deck and passes through a flashing support and flexible flashing that mimics the contour of the adjacent roof tiles. In other embodiments, a tile hook passes through partial or full tile replacement flashing. A plug or other structure blocks the space around the tile hook preventing the ingress of pests and debris under the flashing and surrounding tiles. Additional photovoltaic module mounting hardware, including sections of rails and frame mounts are attached either the mounting bracket or tile hook.
Abstract:
The invention includes an apparatus for mounting a photovoltaic (PV) module on a structure where the apparatus includes a base portion, a stud portion, and a coupling portion. The coupling portion includes a male portion that acts as a spring under load and a clip portion that penetrates the PV module frame to create a grounding bond. The apparatus includes a lower jaw, shaped to pry open a groove, and a key portion that can compress to allow for tolerances. The invention further includes a clip with one or more tabs and one or more teeth. The invention further includes a replacement roof tile which includes a support structure with a horizontal flange, a vertical component, a horizontal component, a flashing with an upper surface and a lower surface, and a tile-shaped metal surface having a curvilinear shape that reflects the shapes of adjacent tiles.
Abstract:
A bracket for installing photovoltaic modules on a tile roof. The bracket can have a base portion adapted to sit on a flat roof surface below a tile. A pair of curved portions above the base portion can be supported by a pair of vertical portions. A riser portion can be connected to the pair of curved portion and rising in a direction perpendicular to a roof surface. A flange can be connected to and be perpendicular to the riser portion and parallel to the base.
Abstract:
The invention includes an apparatus for mounting a photovoltaic (PV) module on a structure where the apparatus includes a base portion, a stud portion, and a coupling portion. The coupling portion includes a male portion that acts as a spring under load and a clip portion that penetrates the PV module frame to create a grounding bond. The apparatus includes a lower jaw, shaped to pry open a groove, and a key portion that can compress to allow for tolerances. The invention further includes a clip with one or more tabs and one or more teeth. The invention further includes a replacement roof tile which includes a support structure with a horizontal flange, a vertical component, a horizontal component, a flashing with an upper surface and a lower surface, and a tile-shaped metal surface having a curvilinear shape that reflects the shapes of adjacent tiles.
Abstract:
A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.
Abstract:
A bracket for installing photovoltaic modules on a tile roof. The bracket can have a base portion adapted to sit on a flat roof surface below a tile. A pair of curved portions above the base portion can be supported by a pair of vertical portions. A riser portion can be connected to the pair of curved portion and rising in a direction perpendicular to a roof surface. A flange can be connected to and be perpendicular to the riser portion and parallel to the base.