Abstract:
Methods and apparatus provide for: acquiring a still image of a scene at a location; acquiring a moving image of at least one object at the scene taken at a different time of day, a different date, and/or a different season; selecting an image frame from among a plurality of image frames of the moving image as a still image frame; generating a three-dimensional (3D) image from the still image in a three-dimensional (3D) object space; superimposing the still image frame from the moving image onto the three-dimensional (3D) image; displaying the three-dimensional (3D) image on a display screen for a user; and generating the moving image superimposed on the three-dimensional (3D) image, starting at the selected image frame, in response to receiving a command from the user.
Abstract:
A block tool, which can be assembled by a user, is configured with multiple types of blocks and is shot by a camera for capturing a still image or a moving image. The position coordinates of a marker of the square-pillar block in a three-dimensional space are obtained by image recognition. Also, a connecting position and the type of each block, a gradient vector of the square-pillar block, an angle between two blocks constituting the square-pillar block, and the respective blocks' lengths are obtained so as to derive the shape, posture, and position of the block tool, and corresponding information processing is then performed.
Abstract:
An obstacle detecting unit detects an obstacle for a user wearing a head mounted display from an image of the outside world. A distance calculating unit calculates the distance from a detected obstacle to the user wearing the head mounted display. An obstacle replacing unit replaces the detected obstacle with a virtual object. A virtual object synthesizing unit generates a virtual object at a position within a virtual space displayed on the head mounted display, in which the position is determined according to the distance to the obstacle.
Abstract:
In an interface apparatus for presenting a force sense at a remote place or in a virtual space to a user, the number of motors for exerting force upon fingers of the user is decreased. The interface apparatus includes a first arm and a second arm for being attached to the thumb and a finger other than the thumb, respectively. A motor includes a motor main body supported for rotation, and a rotary shaft that relatively rotates with respect to the motor main body. The rotary shaft is connected to the second arm. The motor main body is connected to the first arm so as to impart rotation thereof to the first arm.
Abstract:
When a place where a different panoramic image was captured is present in a direction in which a panoramic image to be displayed is captured, a marker setting unit associates a marker indicating that the different panoramic image is present in said image-captured direction with the panoramic image to be displayed. A mapping processing unit maps, as a texture, the panoramic image to be displayed, with which the marker of the different panoramic image is associated, in a three-dimensional panoramic space. A three-dimensional image generation unit generates a three-dimensional panoramic image when the three-dimensional panoramic space is viewed in a designated visual line direction, with a place where the panoramic image to be displayed is captured as a visual point position. A user interface unit accepts a user's instruction regarding the displayed three-dimensional panoramic image.
Abstract:
An image generating device includes: a storage section that stores images of surrounding spaces centered at plural different fixed points; a detecting section that detects translational movement on the basis of the location of the point of view; an image processor that acquires an image of a displaying target by clipping out part of the image of the surrounding space centered at the fixed point, stored in the storage section, on the basis of the location of the point of view and the direction of the line of sight; and a switching section that makes switching to the image of the surrounding space centered at another fixed point closest to the point of view after translational movement if the plural different fixed points are so disposed that the surrounding spaces centered at the fixed points overlap with each other in a world coordinate system and translational movement is detected.
Abstract:
A mask region extraction unit extracts a region that is to be masked in a panoramic image. A mask processing unit generates the object image where the region to be masked in the panoramic image is masked. A positioning unit adjusts the direction of a spherical image to the shooting direction of the object image. A mapping processing unit maps the mask-processed object image and the spherical image onto a three-dimensional (3D) object space as textures. A 3D image generator generates a 3D panoramic image, when the 3D panoramic image is viewed in a specified line of sight in such a manner so as to regard the shooting location of the panoramic as a viewpoint position.
Abstract:
A control point detector detects controls points, with which moving images are associated with a region of a panoramic image, by detecting feature points between the panoramic image and a frame of part of the moving images. An alignment processing unit adjusts the alignment of the moving images relative to the panoramic image, based on the control points. A mapping processing unit maps the panoramic image and a still image frame of the moving images the alignment of which adjusted by the alignment processing unit, onto a three-dimensional (3D) panoramic space as textures. A 3D image generator generates a 3D panoramic image, when the three-dimensional panoramic image is viewed in a specified line of sight. When a moving image reproduction unit receives instructions to reproduce the moving images in the 3D panoramic image, the moving image reproduction unit reproduces the moving images.