Abstract:
The present technology relates to a control device and method that can focus on a desired position of a subject, and a surgical microscope system. The control device includes: an initial in-focus position detection unit configured to detect a focus position when focusing on a predetermined subject included in an observation image of an eye of a patient that is a surgical operation target as an initial in-focus position; and a calculation unit configured to determine an offset value indicating a distance between a target eye organ that is inside a corneal endothelium of the eye and the initial in-focus position on the basis of information regarding structure of an eyeball, and to calculate an in-focus position that is a focus position focused on the target eye organ on the basis of the offset value and the initial in-focus position. The present technology is applicable to the surgical microscope system.
Abstract:
An image processing apparatus includes, using encoded streams produced by individually encoding macro blocks arranged in a horizontal direction into a same slice for a plurality of image contents, a stream combination section configured to generate an encoded stream of a multi-image playback image displaying the plurality of image contents at the same time.
Abstract:
[Object] To provide an image processing device, an image processing method, and an image processing program that make it possible to perform an appropriate operation according to a procedure. [Solving Means] An image processing device according to the present technology includes: an image recognition section that performs an image recognition with respect to a front image that is a captured image of an eye; a display information generator that generates display information; and a controller that controls at least one of a cross-sectional information acquisition section or the display information generator according to a selected procedure, the cross-sectional information acquisition section acquiring cross-sectional information regarding a cross section of an eye.
Abstract:
A video processing apparatus includes a combining unit that combines encoded streams of a plurality of videos to generate an encoded stream of a multiple-video image composed of the videos, each encoded stream of each video having coding units in each horizontal line that are encoded as a slice, and an insertion unit that inserts an insertion stream into the encoded stream of the multiple-video image generated by the combining unit when a view area of the multiple-video image is moved. The insertion stream is an encoded stream in which all the coding units in the multiple-video image are replaced with skip macroblocks with a motion vector indicating a direction and an amount of movement of the view area.
Abstract:
The present invention relates to an image processing device and method, a surgical system, and a surgical member with which a position and an orientation of the surgical member for surgery of a subject can be easily grasped. The present invention acquires a microscopic image (201) obtained by photographing the surgical member (121) inserted to the subject with a surgical microscope (112), estimates the relative posture of the surgical member in the subject on the basis of the acquired microscopic image (201), and outputs posture information (222, 223, 224) associated with the posture that has been estimated. The present invention can be applied to ophthalmic surgery, in which an intraocular endoscope or surgical tool is observed with a surgical microscope, for example.
Abstract:
An image processing apparatus includes, using encoded streams produced by individually encoding macro blocks arranged in a horizontal direction into a same slice for a plurality of image contents, a stream combination section configured to generate an encoded stream of a multi-image playback image displaying the plurality of image contents at the same time.
Abstract:
A video processing apparatus includes a combining unit that combines encoded streams of a plurality of videos to generate an encoded stream of a multiple-video image composed of the videos, each encoded stream of each video having coding units in each horizontal line that are encoded as a slice, and an insertion unit that inserts an insertion stream into the encoded stream of the multiple-video image generated by the combining unit when a view area of the multiple-video image is moved. The insertion stream is an encoded stream in which all the coding units in the multiple-video image are replaced with skip macroblocks with a motion vector indicating a direction and an amount of movement of the view area.
Abstract:
The stereoscopic effect of an image presented in accordance with an additional optical system is compensated for. There is provided an ophthalmic surgery microscope system including: a surgical microscope that observes an inside of an eye from a pupil, and magnifies and presents a real image; an additional optical system selectively arranged between the surgical microscope and the pupil; an imaging unit that acquires the real image presented by the surgical microscope as an image; a presentation unit that stereoscopically presents the image; and a control unit that changes a vertical magnification control value for adjusting a vertical magnification of the real image in accordance with a detection result of the additional optical system.
Abstract:
To provide an intraocular lens to which a mark for assisting more accurate fixation in an eye has been applied. Provided is an intraocular lens including an optical part having a mark that is detectable under illumination of a specific wavelength range outside a wavelength range of visible light, and a support part that supports the optical part, in which the mark is indicated by a geometric pattern that allows for identification of an optical center position of the optical part and information regarding posture of the optical part in an eye.