Abstract:
A solid-state image pickup unit of the invention includes a plurality of pixels, each of which includes a photoelectric conversion element. The photoelectric conversion element includes a photoelectric conversion layer; and first and second electrodes provided with the photoelectric conversion layer in between, the photoelectric conversion layer including a first organic semiconductor of a first conductive type and a second organic semiconductor of a second conductive type, and being configured by addition of a third organic semiconductor made of a derivative or an isomer of one of the first and second organic semiconductors.
Abstract:
A first photoelectric conversion element according to an embodiment of the present disclosure incudes: a first electrode; a second electrode disposed to be opposed to the first electrode; and a photoelectric conversion layer provided between the first electrode and the second electrode and including a chromophore, fullerene or a fullerene derivative, and a hole-transporting material, in which the chromophore and the fullerene or the fullerene derivative are bonded to each other at least partially via a crosslinking group in the photoelectric conversion layer.
Abstract:
[Problem] Provided are a photoelectric conversion device and an imaging apparatus capable of improving quantum efficiency and a response speed.[Solving means] A first photoelectric conversion device according to one embodiment of the present disclosure includes a first electrode, a second electrode opposed to the first electrode, and a photoelectric conversion layer. The photoelectric conversion layer is provided between the first electrode and the second electrode and includes at least one type of one organic semiconductor material having crystallinity. Variation in a ratio between horizontally-oriented crystal and vertically-oriented crystal in the photoelectric conversion layer is three times or less between a case where film formation of the one organic semiconductor material is performed at a first temperature and a case where the film formation of the one organic semiconductor material is performed at a second temperature. The second temperature is higher than the first temperature.
Abstract:
[Problem] Provided are a photoelectric conversion device and an imaging apparatus capable of improving quantum efficiency and a response speed. [Solving means] A first photoelectric conversion device according to one embodiment of the present disclosure includes a first electrode, a second electrode opposed to the first electrode, and a photoelectric conversion layer. The photoelectric conversion layer is provided between the first electrode and the second electrode and includes at least one type of one organic semiconductor material having crystallinity. Variation in a ratio between horizontally-oriented crystal and vertically-oriented crystal in the photoelectric conversion layer is three times or less between a case where film formation of the one organic semiconductor material is performed at a first temperature and a case where the film formation of the one organic semiconductor material is performed at a second temperature. The second temperature is higher than the first temperature.
Abstract:
To provide a photoelectric conversion element capable of further improving performance in a photoelectric conversion element using an organic semiconductor material. The photoelectric conversion element includes a first electrode and a second electrode arranged to face each other, and a photoelectric conversion layer 17 provided between the first electrode and the second electrode, in which the photoelectric conversion layer 17 includes a first organic semiconductor material and a second organic semiconductor material, and at least one of the first organic semiconductor material or the second organic semiconductor material is an organic molecule having a HOMO volume fraction of 0.15 or less or a LUMO volume fraction of 0.15 or less.
Abstract:
A glass-ceramic includes an oxide containing lithium (Li), silicon (Si), and boron (B) and has an X-ray diffraction spectrum with two or more peaks appearing in the range 20°≦2θ≦25° and with two or more peaks appearing in the range 25°