摘要:
In a method of fabricating organic light emitting diode display, a planarization layer is annealed, cured, provided with an ashing treatment, and surface-treated to reduce roughness of the planarization layer. Therefore, it is possible to improve reduce problems such as a decrease in reflectivity and variation of color coordinates of the organic light emitting diode display due to the roughness of the planarization layer.
摘要:
In a method of fabricating organic light emitting diode display, a planarization layer is annealed, cured, provided with an ashing treatment, and surface-treated to reduce roughness of the planarization layer. Therefore, it is possible to improve reduce problems such as a decrease in reflectivity and variation of color coordinates of the organic light emitting diode display due to the roughness of the planarization layer.
摘要:
A thin film transistor (TFT) having improved characteristics, a method for fabricating the same, and an organic light emitting display device (OLED) including the same. The TFT is constructed with a substrate, a semiconductor layer disposed on the substrate and including a channel region, source and drain regions, a gate insulating layer disposed on the semiconductor layer, a gate electrode disposed on the gate insulating layer and corresponding to the channel region, an interlayer insulating layer disposed on the gate electrode, and source and drain electrodes electrically connected to the source and drain regions of the semiconductor layer. The channel region is made from polycrystalline silicon (poly-Si), and the source and drain regions are made from amorphous silicon (a-Si). The polycrystalline silicon of the channel region is formed by crystallizing amorphous silicon using Joule's heat generated by the gate electrode.
摘要:
A method of manufacturing an organic light emitting display device includes providing a substrate, the substrate including a first electrode on which a first photosensitive layer is formed, a second electrode on which a second photosensitive layer is formed, and an exposed third electrode, coating an organic layer on the substrate, and carrying out an ashing process to remove the organic layer and the second photosensitive layer and to partially remove the first photosensitive layer so as to avoid exposing the upper surface of the first electrode.
摘要:
A flat panel display device that includes a clad unit that may prevent terminals of a pad unit from becoming corroded or damaged by an etching solution during etching. The flat panel display device may include a display unit, a pad unit which may include a plurality of terminals electrically connecting the display unit to external devices, and a clad unit which may cover at least side end portions of the terminals, in which the clad unit may be composed of an insulating material.
摘要:
The present invention relates to a one-touch type foldable tent, and in particular to an improved one-touch type foldable tent in which the poles are concurrently folded and unfolded based on an operation of a connection assembly. The connection assembly is provided at an upper center of the tent for folding and unfolding the poles, and the upper sides of the poles are hinged at the center connection assembly.
摘要:
A method of fabricating a thin film transistor is provided. The method comprises first preparing a substrate and forming an amorphous silicon layer on the substrate. A catalyst construction is then positioned on the amorphous silicon layer and an anode and a cathode are then connected to the catalyst construction. A predetermined amount of electric power is then delivered to the anode and the cathode, generating joule heat which then crystallizes the portion of the amorphous silicon layer on which the catalyst construction is positioned, thereby forming a polysilicon layer. The remaining portion of the amorphous silicon layer is then crystallized to a polysilicon layer by propagating the crystallization of the portions of the polysilicon layer on which the catalyst construction is positioned.
摘要:
An organic light-emitting display apparatus includes: an active layer formed on the substrate; a gate electrode, in which a first insulation layer formed on the active layer, a first conductive layer formed on the first insulation layer and comprising a transparent conductive material, and a second conductive layer comprising a metal are sequentially stacked; a pixel electrode, in which a first electrode layer formed on the first insulation layer to be spaced apart from the gate electrode and comprising a transparent conductive material, a second electrode layer formed of a semi-permeable metal and comprising pores, and a third electrode layer comprising a metal are sequentially stacked; source/drain electrodes electrically connected to the active layer with a second insulation layer covering the gate electrode and the pixel electrode interposed therebetween; an electro-luminescence (EL) layer formed on the pixel electrode; and an opposite electrode formed on the EL layer to face the pixel electrode, wherein the second electrode layer comprises nano-sized silver (Ag) particles.
摘要:
A method of manufacturing an organic light-emitting display device, the method including forming a thin film transistor (TFT); forming a planarization layer on the TFT; forming an opening in the planarization layer; and forming an organic light emitting diode that is electrically connected to the TFT through the opening, wherein forming the opening in the planarization layer includes forming a photosensitive layer on the planarization layer, and irradiating light on the photosensitive layer such that the light has a focus point offset from a surface of the planarization layer to control a gradient of the opening.
摘要:
A thin film transistor (TFT) having improved characteristics, a method for fabricating the same, and an organic light emitting display device (OLED) including the same. The TFT is constructed with a substrate, a semiconductor layer disposed on the substrate and including a channel region, source and drain regions, a gate insulating layer disposed on the semiconductor layer, a gate electrode disposed on the gate insulating layer and corresponding to the channel region, an interlayer insulating layer disposed on the gate electrode, and source and drain electrodes electrically connected to the source and drain regions of the semiconductor layer. The channel region is made from polycrystalline silicon (poly-Si), and the source and drain regions are made from amorphous silicon (a-Si). The polycrystalline silicon of the channel region is formed by crystallizing amorphous silicon using Joule's heat generated by the gate electrode.