Abstract:
A frequency control apparatus and method for railway wireless communication are provided. The frequency control apparatus includes a variable frequency processor and a fixed frequency processor. The variable frequency processor selects an available variable frequency and wirelessly receives non-safety-related train running information from a base station at the selected variable frequency. The fixed frequency processor wirelessly receives safety-related train running information at a predetermined fixed frequency.
Abstract:
The present invention relates to a mobile communication system, and more particularly, to a repeater and a ranging method using the repeater. In the mobile communication system including the repeater, a ranging operation is performed so that data are transmitted to a base station regardless of whether a mobile terminal is within a repeater area. Accordingly, it is determined whether a ranging code received through a ranging flag is directly received from the mobile terminal or if it is received through the repeater. When the ranging code is transmitted to the base station through the repeater, the ranging operation of the mobile terminal is performed.
Abstract:
Provided is a method for remote power management capable of remotely controlling power consumption. The method for remote power management includes: allowing a power management device to generate power information on the basis of power consumption information collected from at least one electronic apparatus and transmit the generated power information to a user terminal through a wireless communication network; and to control an operation of the at least one electronic apparatus in accordance with a control command transmitted in response to the power information from the user terminal through the wireless communication network.
Abstract:
A liquid crystal display device includes a support main having a rectangular frame shape, a reflection plate in the support main, a light guide plate over the reflection plate, a light-emitting diode (LED) assembly including LEDs arranged along a light-incident surface of the light guide plate and a metal core printed circuit board (MCPCB) on which the LEDs are mounted, a thermal conductive means contacting the MCPCB and having a thermal conductivity within a range of 1.5 to 3 W/m·K, a plurality of optical sheets over the light guide plate, a liquid crystal panel over the plurality of optical sheets, a cover bottom at a rear surface of the reflection plate and having a bottom wall and at least one side wall perpendicular to the bottom wall, wherein heats are conducted from the thermal conductive means to the at least one side wall, and a top cover covering edges of a front surface of the liquid crystal and combined with the support main and the cover bottom.