摘要:
A process for optimizing maintenance work schedules for at least one engine includes the steps of retrieving at least one set of data for an engine from a computer readable storage medium; selecting at least one scheduling parameter for the engine; selecting a set of maintenance rules for the engine; selecting at least one maintenance work decision; selecting at least one objective for the engine; optimizing the at least one objective to generate at least one optimal maintenance work decision; and generating at least one optimal maintenance work schedule for the engine.
摘要:
A process for optimizing maintenance work schedules for at least one engine includes the steps of retrieving at least one set of data for an engine from a computer readable storage medium; selecting at least one scheduling parameter for the engine; selecting a set of maintenance rules for the engine; selecting at least one maintenance work decision; selecting at least one objective for the engine; optimizing the at least one objective to generate at least one optimal maintenance work decision; and generating at least one optimal maintenance work schedule for the engine.
摘要:
The optimization algorithm described herein combines stochastic programming and intelligent enumeration schemes that exploit the problem structure to avoid evaluating solutions that on their face are known to be non-optimal. The optimization algorithm finds the module workscope decisions and LLP replacement decisions that minimize expected future maintenance cost per engine flight cycle. The optimization algorithm considers the enormous number of possible solutions, and determines the best one.
摘要:
A method for conducting a repairable inventory analysis calculates the minimum number of repairable parts to be held in inventory while still being able to satisfy the demand for spare parts even in view of uncertain repair lead times. The method uses a set of equations that relates a customer service level to arbitrary probability distribution functions of a repair lead-time and a part arrival process. The distributions are then searched to locate the optimal inventory level in the distribution.
摘要:
A method for conducting a repairable inventory analysis calculates the minimum number of repairable parts to be held in inventory while still being able to satisfy the demand for spare parts even in view of uncertain repair lead times. The method uses a set of equations that relates a customer service level to arbitrary probability distribution functions of a repair lead-time and a part arrival process. The distributions are then searched to locate the optimal inventory level in the distribution.
摘要:
An analyzing and reading device and an analyzing and reading method, for reading and analyzing a test strip for assay detection are disclosed. The test strip has a detection zone and a blank zone, the device includes a photoelectric detection circuit and a processor, wherein the photoelectric detection circuit includes at least two light sources which locate corresponding to the positions of the detection zone and the blank zone of the test strip and are able to emit lights corresponding to the detection zone and blank zone of the test strip, and at least one optical detectors which receive reflected lights from the above two zones; wherein lights emitted by the at least two light sources irradiate the detection zone and blank zone of the strip and are reflected therefrom, and then are received by the optical detector, which in turn feedback the detection information to the processor; the processor making analysis and decision based on the detection information received. The analyzing and reading device and method according to the present invention have high accuracy and less interference when reading.
摘要:
An analyzing and reading device and an analyzing and reading method, for reading and analyzing a test strip for assay detection are disclosed. The test strip has a detection zone and a blank zone, the device includes a photoelectric detection circuit and a processor, wherein the photoelectric detection circuit includes at least two light sources which locate corresponding to the positions of the detection zone and the blank zone of the test strip and are able to emit lights corresponding to the detection zone and blank zone of the test strip, and at least one optical detectors which receive reflected lights from the above two zones; wherein lights emitted by the at least two light sources irradiate the detection zone and blank zone of the strip and are reflected therefrom, and then are received by the optical detector, which in turn feedback the detection information to the processor; the processor making analysis and decision based on the detection information received. The analyzing and reading device and method according to the present invention have high accuracy and less interference when reading.
摘要:
A device and method for determining the assay result is disclosed. The device includes a photoelectric detection circuit and a processor, and an optical detection device which is set with a detection zone and a blank zone for measuring assay results, and the photoelectric detection circuit detects the light-reflection intensity signal, and feeds back the detected information to the processor, and the processor is preset with a threshold value changing with time, and determined value processed by the processor is compared with the preset threshold value to obtain the result of assay. The method for determining the assay result display the result when confirmed determined value is bigger than the preset threshold value or can not reach preset threshold value within a fixed time or detected signal can not be determined, wherein the threshold value changes with the time. The device and method for determining the assay result work more efficiently, measure more accurately and cost less than the prior art.
摘要:
A method and system for intelligently identifying and reading an immunochromatographic strip is disclosed. The method includes the following steps: (a) preparing an immunochromatographic strip provided with a bar code, that is, setting a bar code on an immunochromatographic strip to form a bar code layer; (b) identifying the immunochromatographic strip provided with a bar code through a bar code identification circuit, and dispatching an analysis program corresponding to the type of the immunochromatographic strip provided with a bar code; (c) transmitting visible light to irradiate the immunochromatographic strip provided with a bar code through a light-emitting diode (LED) circuit controlled by a central processing unit; receiving reflected or transmitted light through a photoelectrical sensor and converting the received light into electrical signals; and then amplifying the electrical signals through a signal amplification circuit and transmitting the amplified signals to the central processing unit in order to analyze the signals through the analysis program dispatched in step (b); and (d) outputting an analysis result.