摘要:
Techniques disclosed herein include systems and methods for providing a scalable solution to transmit edge IP Multicast sender information in a Shortest Path Bridging (SPB) network. Control information is exchanged between Ingress Backbone Edge Bridges and Egress Backbone Edge Bridges Such control messages do not cause path computations at Backbone Core Bridges within the SPB network. Such exchanges of control messages trigger sending SPB specific Intermediate System To Intermediate System (IS-IS) TLV control message with path computation information via IS-IS control messages. This second set of control messages is exchanged within the SPB network and includes source-specific multicast stream information that is used by Backbone Core Bridges to establish a multicast forward state and compute multicast forwarding paths. By separating edge and routing information, IP multicasting functionality within the SPB is provided while enabling scaling and new edge multicasting applications.
摘要:
Techniques disclosed herein include systems and methods for improving efficiency of multicast state generation within Shortest Path Bridging (SPB) networks. Techniques include using an IS-IS TLV structure with new multicast state computation rules for SPB Networks. SPB Networks use a TLV field for the I-SID Address (and equivalent TLV fields defined in different IETF/IEEE drafts) and node nicknames to signal information that is used to compute a multicast state required to provide L2 Services over a given SPB Network. The I-SID Address TLV is set or filled to carry various items of information. These items of information can include Backbone Media Access Control (B-MAC), Virtual Local Area Network Identifier (VID), I-SID[Transmit, Receive Bit], etc.
摘要:
Techniques disclosed herein include systems and methods for providing a scalable solution to transmit edge IP Multicast sender information in a Shortest Path Bridging (SPB) network. Control information is exchanged between Ingress Backbone Edge Bridges and Egress Backbone Edge Bridges using Multicast Flow Specific and type-length-value (TLV) structures, or other control messages, to announce available multicast streams at ingress nodes within the SPB network. Such exchanges of control messages trigger sending SPB specific Intermediate System To Intermediate System (IS-IS) TLV control message with path computation information via IS-IS control messages. This second set of control messages is exchanged within the SPB network and includes source-specific multicast stream information that is used by Backbone Core Bridges to establish a multicast forward state and compute multicast forwarding paths. Multicast data traffic can then be transmitted through the SPB network using a one-to-many distribution model.
摘要:
A method, apparatus and computer program product for distribution of routing information used in a transport network is presented. In a transport network having a plurality of edge devices and core devices, a main instance of a protocol is used for shortest path and tree computation. A multicast tree is defined per Virtual Services Network (VSN) to distribute Link State Data Base (LSDB) updates that only apply to members of said VSN. Multicast trees are built using a secondary instance of the control protocol LSDB and wherein each VSN multicast tree represents a separate instance of the secondary instance of the control protocol LSD. LSDB updates are distributed that only apply to members of the VSN using the multicast tree for the VSN.
摘要:
A method, apparatus and computer program product for distribution of routing information used in a transport network is presented. In a transport network having a plurality of edge devices and core devices, a main instance of a protocol is used for shortest path and tree computation. A multicast tree is defined per Virtual Services Network (VSN) to distribute Link State Data Base (LSDB) updates that only apply to members of said VSN. Multicast trees are built using a secondary instance of the control protocol LSDB and wherein each VSN multicast tree represents a separate instance of the secondary instance of the control protocol LSD. LSDB updates are distributed that only apply to members of the VSN using the multicast tree for the VSN.
摘要:
Techniques disclosed herein include systems and methods for improving efficiency of multicast state generation within Shortest Path Bridging (SPB) networks. Techniques include using an IS-IS TLV structure with new multicast state computation rules for SPB Networks. SPB Networks use a TLV field for the I-SID Address (and equivalent TLV fields defined in different IETF/IEEE drafts) and node nicknames to signal information that is used to compute a multicast state required to provide L2 Services over a given SPB Network. The I-SID Address TLV is set or filled to carry various items of information. These items of information can include Backbone Media Access Control (B-MAC), Virtual Local Area Network Identifier (VID), I-SID[Transmit, Receive Bit], etc.
摘要:
Techniques disclosed herein include systems and methods for improving multicast traffic operations in a Shortest Path Bridging (SPB) network by conveying bridging domain information of an incoming interface (IIF) when transporting multicast traffic over the SPB network. Techniques disclosed herein include modifying encapsulation packet header information of existing Mac-In-Mac fields to convey additional information that can be interpreted at edge nodes by modifying edge node interpretation of multicast data. Specifically, the value of the I-SID in the BMAC-DA field can be set to be different from the I-SID value in the I-TAG field. Carrying the L2 VSN I-SID value in the I-TAG allows the Egress BEBs to determine which VLAN/L2 VSN/Bridging-Domain of the IIF is in use, and then modify or preserve underlying header information accordingly.
摘要:
Techniques herein include systems and methods that extend functionality of transport networks including Transparent Interconnect of Lots of Links (TRILL) networks. Techniques include using a portion of information within transport device address encapsulation headers for purposes other than identifying source and destination device addresses. The system masks a portion of bits in an address header for an address lookup in forwarding tables of a transport network node. The remaining bits in the address field(s) become free bits that can be used for a variety of application purposes, such as flow identifier selection. By using information fields that already exist in encapsulation headers, such techniques provide additional information without increasing packet size or requiring new protocols. Embodiments can combine Equal-cost multi-path routing (ECMP) functionality, Reverse Path Forwarding (RPF) checks, and Time to live (TTL) protection at the same time.
摘要:
An OAM link trace message is sent from a source node to a target node in a link state protocol controlled Ethernet network. The link trace message using an 802.1ag format except, as a destination address, it uses either the unicast Ethernet MAC node ID of the target node, or the multicast destination address of the service instance. A method of network topology verification in a link state protocol controlled Ethernet network checks the link state protocol database at a node to ascertain the control plane topology view of at least part of the network. It then executes one or more Ethernet OAM commands from the node to ascertain the data plane topology view of the same part of the network. The control plane topology view of the network is compared to the data plane topology view of the network to see if they match. An error is flagged if they do not match.
摘要:
Embodiments herein include systems and methods for providing a mechanism for tunneled data transport within a dual homed access network. A tunnel manager, at a first network connectivity device in a transport network, identifies the transport network configured to interconnect at least two access networks for transporting data traffic between one or more end stations connected to the access networks. The first network connectivity device is coupled to a first access network. The tunnel manager identifies a second network connectivity device. The second network connectivity device is coupled to the first access network to provide the first access network dual homed access to the transport network via the first and second network connectivity devices. The tunnel manager creates a virtual tunnel that connects the first and second network connectivity devices to a third network connectivity device across the transport network. The virtual tunnel defines a same virtual tunnel having multiple paths such that the third network connectivity device learns a single virtual tunnel for device address learning.