摘要:
Disclosed is a method for preparing crystalline small pore molecular sieves, said method comprising (a) preparing a reaction mixture comprising (1) at least one active source of an oxide of a tetravalent element or mixture of tetravalent elements, (2) optionally at least on active source of an oxide of a trivalent element or mixture of trivalent elements, (3) at least one active source of an alkali metal, (4) seed crystals capable of forming the small pore molecular sieve, (5) a structure directing agent capable of forming the small pore molecular sieve, and (6) an amount of water that is not substantially in excess of the amount required to cause and maintain crystallization of the small pore molecular sieve; and (b) heating said reaction mixture at crystallization conditions for sufficient time to form crystallized material containing crystals of the small pore molecular sieve.
摘要:
The present invention provides a method for preparing silica containing molecular sieves which may be mixed with an organic polymer to create a mixed matrix membrane. Further, this invention includes a method of making such a mixed matrix membrane and the membrane itself. A process for separating component gases from a mixture using the subject mixed matrix membrane is also described. The method for preparing silica containing molecular sieves comprises super water washing silica containing molecular sieves to produce water washed molecular sieves which are substantially free of surface remnants. Super water washing also ideally lowers the concentration of alkali metals in the molecular sieves. The water washed sieves are sufficiently free of surface remnants such that when the water washed sieves are subjected to a Sieve Wash Conductivity Test, a wash filtrate is produced having a conductivity of less than 110 micro mhos/cm, more preferably less than 80 micro mhos/cm, even more preferably less than 50 micro mhos/cm, and most preferably less than 30 micro mhos/cm. It is believed that super washing the sieves to this degree will enhance, compared to conventional preparation techniques, the ability of the molecular sieves to bond with an organic polymer to form a highly selective and permeable mixed matrix membrane.
摘要:
Disclosed is a method for preparing crystalline zeolite SSZ-13, said method comprising (a) preparing a reaction mixture comprising (1) at least one active source of an oxide of a tetravalent element or mixture of tetravalent elements, (2) optionally at least on active source of an oxide of a trivalent element or mixture of trivalent elements, (3) at least one active source of an alkali metal, (4) seed crystals of zeolite SSZ-13, (5) benzyl trimethylammonium cation in an amount sufficient to form crystals of zeolite SSZ-13, the benzyl trimethylammonium cation being used in the absence of a 1-adamantammonium cation, and (6) an amount of water that is not substantially in excess of the amount required to cause and maintain crystallization of the small pore zeolite; and (b) heating said reaction mixture at crystallization conditions for sufficient time to form crystallized material containing crystals of SSZ-13.
摘要:
Disclosed is a method for preparing crystalline zeolite SSZ-13 said method comprising (a) preparing a reaction mixture comprising (1) at least one active source of an oxide of a tetravalent element or mixture of tetravalent elements, (2) optionally at least on active source of an oxide of a trivalent element or mixture of trivalent elements (3) at least one active source of an alkali metal, (4) seed crystals of zeolite SSZ-13, (5) benzyl trimethylammonium cation in an amount sufficient to form crystals of zeolite SSZ-13, the benzyl trimethylammonium, cation being used in the absence of a 1-adamantammonium cation, and (6) an amount of water that is not substantially in excess of the amount required to cause and maintain crystallization of the small pore zeolite; and (b) heating said reaction mixture at crystallization conditions for sufficient time to form crystallized material containing crystals of SSZ-13.
摘要:
Disclosed is a method for preparing crystalline zeolite SSZ-13 said method comprising (a) preparing a reaction mixture comprising (1) at least one active source of an oxide of a tetravalent element or mixture of tetravalent elements, (2) optionally at least on active source of an oxide of a trivalent element or mixture of trivalent elements (3) at least one active source of an alkali metal, (4) seed crystals of zeolite SSZ-13, (5) benzyl trimethylammonium cation in an amount sufficient to form crystals of zeolite SSZ-13, the benzyl trimethylammonium, cation being used in the absence of a 1-adamantammonium cation, and (6) an amount of water that is not substantially in excess of the amount required to cause and maintain crystallization of the small pore zeolite; and (b) heating said reaction mixture at crystallization conditions for sufficient time to form crystallized material containing crystals of SSZ-13.
摘要:
Disclosed is a method for preparing crystalline small pore molecular sieves, said method comprising (a) preparing a reaction mixture comprising (1) at least one active source of an oxide of a tetravalent element or mixture of tetravalent elements, (2) optionally at least on active source of an oxide of a trivalent element or mixture of trivalent elements, (3) at least one active source of an alkali metal, (4) seed crystals capable of forming the small pore molecular sieve, (5) a structure directing agent capable of forming the small pore molecular sieve, and (6) an amount of water that is not substantially in excess of the amount required to cause and maintain crystallization of the small pore molecular sieve; and (b) heating said reaction mixture at crystallization conditions for sufficient time to form crystallized material containing crystals of the small pore molecular sieve.
摘要:
The present invention is directed to a process for producing crystalline zeolites from a reaction mixture containing an N,N,N-trialkyl benzyl quaternary ammonium cation as a structure directing agent.
摘要:
The present invention provides a method for preparing silica containing molecular sieves which may be mixed with an organic polymer to create a mixed matrix membrane. Further, this invention includes a method of making such a mixed matrix membrane and the membrane itself. A process for separating component gases from a mixture using the subject mixed matrix membrane is also described. The method for preparing silica containing molecular sieves comprises super water washing silica containing molecular sieves to produce water washed molecular sieves which are substantially free of surface remnants. Super water washing also ideally lowers the concentration of alkali metals in the molecular sieves. The water washed sieves are sufficiently free of surface remnants such that when the water washed sieves are subjected to a Sieve Wash Conductivity Test, a wash filtrate is produced having a conductivity of less than 110 micro mhos/cm, more preferably less than 80 micro mhos/cm, even more preferably less than 50 micro mhos/cm, and most preferably less than 30 micro mhos/cm. It is believed that super washing the sieves to this degree will enhance, compared to conventional preparation techniques, the ability of the molecular sieves to bond with an organic polymer to form a highly selective and permeable mixed matrix membrane.
摘要:
Disclosed is a method for preparing crystalline zeolite SSZ-13, said method comprising (a) preparing a reaction mixture comprising (1) at least one active source of an oxide of a tetravalent element or mixture of tetravalent elements, (2) optionally at least on active source of an oxide of a trivalent element or mixture of trivalent elements, (3) at least one active source of an alkali metal, (4) seed crystals of zeolite SSZ-13, (5) benzyl trimethylammonium cation in an amount sufficient to form crystals of zeolite SSZ-13, the benzyl trimethylammonium cation being used in the absence of a 1-adamantammonium cation, and (6) an amount of water that is not substantially in excess of the amount required to cause and maintain crystallization of the small pore zeolite; and (b) heating said reaction mixture at crystallization conditions for sufficient time to form crystallized material containing crystals of SSZ-13.
摘要:
The present invention relates to zeolites having the crystal structure of chabazite (CHA) and having small crystallite size, to processes using the small crystallite CHA as a catalyst, and to gas separation processes using the small crystallite CHA.