摘要:
A fuel processor for rapid start and operational control. The fuel processor includes a reformer, a shift reactor, and a preferential oxidation reactor for deriving hydrogen for use in creating electricity in a plurality of H2—O2 fuel cells. A heating and cooling mechanism is coupled to at least the shift reactor for controlling the critical temperature operation of the shift reactor without the need for a separate cooling loop. This heating and cooling mechanism produces or removes thermal energy as a product of the temperature of the combustion of air and fuel. Anode effluent and cathode effluent or air are used to control the temperature output of the heating mechanism. A vaporizer is provided that heats the PrOx reactor to operating temperature.
摘要:
A control system controls steam in a fuel cell system including a fuel processor. A fuel cell has run, standby and shutdown operating modes. A fuel processor provides reformate to the fuel cell. A pressure sensor generates a pressure signal based on a pressure of steam supplied to the fuel processor. A valve directs steam to or vents steam away from the fuel processor. A controller communicates with the pressure sensor, the fuel cell and the valve and controls the valve based on the operating mode of the fuel cell and the pressure signal. The controller opens the valve during the shutdown mode. The controller closes the valve during the run operating mode. The controller initially closes the valve during the standby mode. The controller opens the valve if the pressure signal exceeds a first predetermined pressure value and closes the valve when the pressure falls.
摘要:
A method for delaying an air purge of a fuel cell stack at system shut-down until the temperature of the stack is reduced below a predetermined temperature. The fuel cell stack includes an anode side, a cathode side, an anode input, a cathode input and an anode exhaust. A temperature sensor monitors the temperature of a cooling fluid flowing through the stack. The anode side of the fuel cell stack is purged at the stack shut-down by directing air from the cathode input line to the anode input line after the temperature of the cooling fluid is reduced to the predetermined temperature.