摘要:
A power converter having a switched capacitor buck/boost operation has first and second switches coupled to a first switching node, third and fourth switches coupled to a second switching node, a capacitor coupled between the first and second switching nodes, and an inductor coupled to the first switching node. A switch controller controls the switches to operate in voltage step-down mode and voltage step-up mode depending on a difference between converter output voltage VOUT and converter input voltage VIN. In a buck-optimized topology operating in a step-down mode, an output current flowing through the first switching node flows through only one switch at a given time. In a boost-optimized topology operating in a step-up mode, an output current flowing through the first switching node flows through only one switch at a given time. As a result, a more compact and efficient power converter may be realized at lower cost.
摘要:
A power converter having a switched capacitor buck/boost operation has first and second switches coupled to a first switching node, third and fourth switches coupled to a second switching node, a capacitor coupled between the first and second switching nodes, and an inductor coupled to the first switching node. A switch controller controls the switches to operate in voltage step-down mode and voltage step-up mode depending on a difference between converter output voltage VOUT and converter input voltage VIN. In a buck-optimized topology operating in a step-down mode, an output current flowing through the first switching node flows through only one switch at a given time. In a boost-optimized topology operating in a step-up mode, an output current flowing through the first switching node flows through only one switch at a given time. As a result, a more compact and efficient power converter may be realized at lower cost.
摘要:
A programmable analog tile integrated circuit placement tool allows a user to manipulate a graphical representation of a first power management integrated circuit (PMIC) tile with respect to a graphical representation of a second PMIC tile in a proposed Multi-Tile Power Management Integrated Circuit (MTPMIC). The novel PMIC tiles have pre-defined physical structures including a bus portion and a memory structure for storing configuration information for configuring the tile. When appropriately placed in a MTPMIC, the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC. A remote user with minimal training in analog circuit design may command the placement of individual tiles in a proposed MTPMIC layout. Upon receiving a user response indicating satisfaction with the placement of PMIC tiles, the tool quickly and automatically generates physical layout data suitable for fabrication of the MTPMIC.
摘要:
A programmable analog tile integrated circuit is configured over a standardized bus by communicating tile configuration information from a first integrated circuit tile, through a second integrated circuit tile, to a third integrated circuit tile. Each of the three integrated circuit tiles is part of an integrated circuit. The standardized bus is formed when the tiles are placed adjacent one another. Data bus and control signal conductors of the adjacent tiles line up and interconnect such that each signal conductor is electrically connected to every tile. Tile configuration information may be written to a selected register identified by an address in any selected one of the tiles using the data bus and control lines, regardless of the relative physical locations of the tile sending and the tile receiving the information. Thus, tile configuration information may pass from one tile to another tile, through any number of intermediate tiles.
摘要:
A programmable analog tile integrated circuit configuration tool communicates a power management control characteristic query soliciting control requirement information for a novel Power Management Integrated Circuit (PMIC) tile in a Multi-Tile Power Management Integrated Circuit (MTPMIC). The configuration tool receives a user response to the query indicating control requirements across a network. The PMIC tile includes configuration registers. Configuration information bit values stored in the configuration registers control the operational characteristics of the functional circuitry of the tile. The configuration registers of each novel PMIC tile are accessible at pre-defined addresses on a standardized bus of the MTPMIC. In response to the user response, the configuration tool generates appropriate tile configuration information for loading the configuration registers such that the PMIC tile within the MTPMIC is programmed to satisfy the user's control requirements.
摘要:
A programmable analog tile integrated circuit placement tool allows a user to manipulate a graphical representation of a first power management integrated circuit (PMIC) tile with respect to a graphical representation of a second PMIC tile in a proposed Multi-Tile Power Management Integrated Circuit (MTPMIC). The novel PMIC tiles have pre-defined physical structures including a bus portion and a memory structure for storing configuration information for configuring the tile. When appropriately placed in a MTPMIC, the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC. A remote user with minimal training in analog circuit design may command the placement of individual tiles in a proposed MTPMIC layout. Upon receiving a user response indicating satisfaction with the placement of PMIC tiles, the tool quickly and automatically generates physical layout data suitable for fabrication of the MTPMIC.
摘要:
An Analog Tile Selection, Placement, Configuration and Programming (ATSPCP) tool communicates a power management characteristic query over a network. The query is displayed to a user on a webpage. The query is a solicitation for desired characteristics of a Power Management Integrated Circuit (PMIC). After receiving user requirements in a response to the query, the tool selects a number of power management integrated circuit tiles having pre-defined physical structures. The pre-defined structure of each tile includes a bus portion and a memory structure for storing configuring information for the tile. When combined in a Multi-Tile Power Management Integrated Circuit (MTPMIC), the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC that meets the user requirements. The ATSPCP tool combines the physical layout data of each selected PMIC tile to form composite physical layout data for the overall MTPMIC.
摘要:
An Analog Tile Selection, Placement, Configuration and Programming (ATSPCP) tool communicates a power management characteristic query over a network. The query is displayed to a user on a webpage. The query is a solicitation for desired characteristics of a Power Management Integrated Circuit (PMIC). After receiving user requirements in a response to the query, the tool selects a number of power management integrated circuit tiles having pre-defined physical structures. The pre-defined structure of each tile includes a bus portion and a memory structure for storing configuring information for the tile. When combined in a Multi-Tile Power Management Integrated Circuit (MTPMIC), the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC that meets the user requirements. The ATSPCP tool combines the physical layout data of each selected PMIC tile to form composite physical layout data for the overall MTPMIC.
摘要:
An integrated circuit includes a plurality of tiles. One tile is a master tile. Other tiles contain writable registers of memory structures. Information for configuring circuitry of the tile is stored in the register in the tile. An individual one of the registers can be written via the master tile. Each memory structure of a register includes a non-volatile floating gate cell (that stores the configuration information) as well as a volatile cell. All transistors have the same gate insulator thickness. Although a programming pulse signal is applied to all memory structures, the state of the non-volatile cell of a memory structure is only changed if the state stored by the associated non-volatile cell differs from the state stored by the volatile cell. Floating gates are automatically refreshed by the programming pulse signal. By storing configuration information in each tile, inefficiencies associated with using blocks of non-volatile memory are avoided.
摘要:
An integrated circuit includes a plurality of tiles. One tile is a master tile. Other tiles contain writable registers of memory structures. Information for configuring circuitry of the tile is stored in the register in the tile. An individual one of the registers can be written via the master tile. Each memory structure of a register includes a non-volatile floating gate cell (that stores the configuration information) as well as a volatile cell. All transistors have the same gate insulator thickness. Although a programming pulse signal is applied to all memory structures, the state of the non-volatile cell of a memory structure is only changed if the state stored by the associated non-volatile cell differs from the state stored by the volatile cell. Floating gates are automatically refreshed by the programming pulse signal. By storing configuration information in each tile, inefficiencies associated with using blocks of non-volatile memory are avoided.