摘要:
A method, an apparatus, and a computer program are provided to utilize built-in self test (BIST) latches for multiple purposes. Conventionally, BIST latches are single purpose. Hence, separate latches are utilized for array built-in self test (ABIST) and logic built-in self test (LBIST) operations. By having the separate latches, though, a substantial amount area is lost. Therefore, to better utilize the latches and the area, ABIST latches are reconfigured to utilize some previously unused ports to allow for multiple uses for the latches, such as for LBIST.
摘要:
A method, an apparatus, and a computer program are provided to utilize built-in self test (BIST) latches for multiple purposes. Conventionally, BIST latches are single purpose. Hence, separate latches are utilized for array built-in self test (ABIST) and logic built-in self test (LBIST) operations. By having the separate latches, though, a substantial amount area is lost. Therefore, to better utilize the latches and the area, ABIST latches are reconfigured to utilize some previously unused ports to allow for multiple uses for the latches, such as for LBIST.
摘要:
A method is provided to utilize built-in self test (BIST) latches for multiple purposes. Conventionally, BIST latches are single purpose. Hence, separate latches are utilized for array built-in self test (ABIST) and logic built-in self test (LBIST) operations. By having the separate latches, though, a substantial amount area is lost. Therefore, to better utilize the latches and the area, ABIST latches are reconfigured to utilize some previously unused ports to allow for multiple uses for the latches, such as for LBIST.
摘要:
Methods and apparatus provide for: producing a control signal at a first substantially steady state logic level indicative of a sleep mode, and at a second substantially steady state logic level indicative of a normal mode; producing a gate signal that is at a substantially steady state null level when the control signal is at the first logic level, and that oscillates at a local clock frequency when the control signal is at the second logic level; producing a local clock signal from a system clock signal as a function of the gate signal; and interposing at least one signal propagation latch circuit between an origin of the control signal and the location at which the gate signal is produced.