Abstract:
A method of additive manufacturing prints a part by adding layers to the part. The heights of the layers are determined by determining an orientation of at least one surface of a model of the part and setting a layer height for a layer to be added to the part based on the determined orientation of the at least one surface of the model of the part.
Abstract:
A three-dimensional part is printed using an additive manufacturing technique. The three-dimensional part includes an outer wall having an outer surface defining a shape of a part and in interior surface defining an interior cavity. The part includes a plurality of first sections having a plurality of printed layers, each printed layer of the first section having a plurality of wall segments that form triangle shaped cells wherein each of the plurality of first sections are attached to the interior surface of the outer wall. The part includes a plurality of second sections having a plurality of printed layers, each printed layer of the second section having a plurality of wall segments that form hexagram shaped cells of hexagons and triangles, wherein each of the plurality of second printed sections are attached to the interior surface of the outer wall and wherein the first and second sections are in an alternating pattern, wherein when adjacent printed layers of the first and second sections are printed a wall segment of a cell defining a triangle bisect the hexagon shaped cell.
Abstract:
A method for generating data for a support structure to be built with a deposition-based digital manufacturing system, the method comprising generating a convex hull polygon based on a boundary polygon of a layer of the support structure, offsetting the convex hull polygon inward, offsetting the boundary polygon outward, and generating an intersection boundary polygon based at least in part on the offset boundary polygon and the offset convex hull polygon.
Abstract:
A method for generating data for a support structure to be built with a deposition-based digital manufacturing system, the method comprising generating a convex hull polygon based on a boundary polygon of a layer of the support structure, offsetting the convex hull polygon inward, offsetting the boundary polygon outward, and generating an intersection boundary polygon based at least in part on the offset boundary polygon and the offset convex hull polygon.
Abstract:
A three-dimensional part is printed using an additive manufacturing technique. The three-dimensional part includes an outer wall having an outer surface defining a shape of a part and in interior surface defining an interior cavity. The part includes a plurality of first sections having a plurality of printed layers, each printed layer of the first section having a plurality of wall segments that form triangle shaped cells wherein each of the plurality of first sections are attached to the interior surface of the outer wall. The part includes a plurality of second sections having a plurality of printed layers, each printed layer of the second section having a plurality of wall segments that form hexagram shaped cells of hexagons and triangles, wherein each of the plurality of second printed sections are attached to the interior surface of the outer wall and wherein the first and second sections are in an alternating pattern, wherein when adjacent printed layers of the first and second sections are printed a wall segment of a cell defining a triangle bisect the hexagon shaped cell.