Abstract:
An integrated circuit power supply includes a DC-to-DC converter and a low drop-out voltage regulator. The DC-to-DC converter efficiently performs voltage conversion and provides power to the low-dropout voltage regulator. The low-dropout voltage regulator rejects noise and regulates an output voltage. The combination of the DC-to-DC converter and a low-dropout voltage regulator provides high-efficiency voltage conversion and noise rejection.
Abstract:
A system and method allow for safe use of headphones that include a microphone when using the headphones with a cellular phone, a music device, or the like. A desired audio signal, e.g., a voice of a caller or music, is discontinued when a microphone associated with the headphones picks up either a change in ambient noise or a particular type of ambient noise, e.g., an ambulance, a police car, a fire truck, someone yelling, brakes squealing, or the like. During this state, the headphones output either an audible alert signal, the ambient noise, or a pre-stored signal that states “fire,” “police,”, “yelling,” etc. In this way, a person can safely talk on the phone or listen to music when walking or driving, while still being cognizant of what is going on around them.
Abstract:
A system and method allow for safe use of headphones that include a microphone when using the headphones with a cellular phone, a music device, or the like. A desired audio signal, e.g., a voice of a caller or music, is discontinued when a microphone associated with the headphones picks up either a change in ambient noise or a particular type of ambient noise, e.g., an ambulance, a police car, a fire truck, someone yelling, brakes squealing, or the like. During this state, the headphones output either an audible alert signal, the ambient noise, or a pre-stored signal that states “fire,” “police,”, “yelling,” etc. In this way, a person can safely talk on the phone or listen to music when walking or driving, while still being cognizant of what is going on around them.
Abstract:
An improved digital phase detector is used in a digital phase lock loop having a digitally controlled oscillator which includes a state controller and a counter. One embodiment of the phase detector includes a digital integrator; a first register and a first absolute value function; a second register and a second absolute value function; and a subtractor. In another embodiment the integrator includes a tapped delay line and a parallel summing network. The summing network includes a flow counter. The invention to provide a mechanism for ensuring the symmetry of the integration intervals of an early/late gate phase detector in the presence of phase error and to achieve relaxed timing for the phase error calculation without shortening the integration intervals to less than half a bit time while providing a valid phase error output once for each bit period.
Abstract:
An electronic device includes a rechargeable battery, an electrical circuit, a battery safety circuit, and a power down mode circuit. The electrical circuit is configured to generate a power mode control signal. The power down mode circuit receives the power mode control signal. If the power mode control signal has a first value, the power down mode circuit is configured to force a voltage at a first port of the battery safety circuit to a voltage value that is less than an under voltage lock out (UVLO) threshold value of the battery safety circuit to transition the electronic device from a normal operating mode to a low current power down mode. The electronic device may further include a wake up mode circuit.
Abstract:
An electronic device includes a rechargeable battery, an electrical circuit, a battery safety circuit, and a power down mode circuit. The electrical circuit is configured to generate a power mode control signal. The power down mode circuit receives the power mode control signal. If the power mode control signal has a first value, the power down mode circuit is configured to force a voltage at a first port of the battery safety circuit to a voltage value that is less than an under voltage lock out (UVLO) threshold value of the battery safety circuit to transition the electronic device from a normal operating mode to a low current power down mode. The electronic device may further include a wake up mode circuit.
Abstract:
Aspects of a method and system for limiting an audio signal output in an audio device are provided. An exposure meter may provide measurements of SPL values of the audio signal. When a volume or exposure level of the audio signal may approach or exceed a specified limit, the audio signal may be enforced to a predetermined limit. The audio signal may be an input or an output signal of a speaker of an audio device such as a stereo headset. A trend of the measured SPL values may be predicted based on the measured SPL values and device specific reference SPL values. When the volume or exposure level of the audio signal may not be within the specified limit, the audio signal may be limited and an alarm may be sent out to listener. A set of audio volume level parameters may be determined and applied, accordingly.
Abstract:
An electronic device includes a rechargeable battery, an electrical circuit, a battery safety circuit, and a power down mode circuit. The electrical circuit is configured to generate a power mode control signal. The power down mode circuit receives the power mode control signal. If the power mode control signal has a first value, the power down mode circuit is configured to force a voltage at a first port of the battery safety circuit to a voltage value that is less than an under voltage lock out (UVLO) threshold value of the battery safety circuit to transition the electronic device from a normal operating mode to a low current power down mode. The electronic device may further include a wake up mode circuit.
Abstract:
A method and apparatus for determining a delay vector from inputs of in-phase and quadrature phase low pass filters to an output of the demodulator of a dual mixer radio receiver and from such delay measurement computing and providing DC offset correction to said receiver.
Abstract:
An electronic device includes a rechargeable battery, an electrical circuit, a battery safety circuit, and a power down mode circuit. The electrical circuit is configured to generate a power mode control signal. The power down mode circuit receives the power mode control signal. If the power mode control signal has a first value, the power down mode circuit is configured to force a voltage at a first port of the battery safety circuit to a voltage value that is less than an under voltage lock out (UVLO) threshold value of the battery safety circuit to transition the electronic device from a normal operating mode to a low current power down mode. The electronic device may further include a wake up mode circuit.