摘要:
Disclosed is a semiconductor integrated circuit device having a plurality of metallization levels of patterned metallization lines that are resistant to electromigration voiding, and methods for making the electromigration void resistant metallization lines. The semiconductor integrated circuit device includes a metallization line having a first end and a second end. Oxide feature regions are defined in the metallization line, and the oxide feature regions are arranged along the metallization line between the first end and the second end. Each one of the oxide feature regions are configured to be separated from a previous oxide feature region by about a Blech length or less, and each of the oxide feature regions are configured to define a region of increased metallization atom concentration and a corresponding increased back-flow force. The oxide feature regions therefore define a composite metallization interconnect line, which is well configured to retard electromigration voiding.
摘要:
Disclosed is a semiconductor chip and method for making a semiconductor chip having strategically placed composite metallization. The semiconductor chip includes a topmost metallization layer that defines a plurality of patterned features including a plurality of input/output metallization pads for receiving an associated plurality of gold bonding wires. An inter-metal oxide layer that is defined under the topmost metallization layer. The semiconductor chip further includes an underlying metallization layer that is defined under the inter-metal oxide layer in order to electrically isolate the topmost metallization layer from the underlying metallization layer. The underlying metallization has a plurality of patterned features, and portions of the plurality of patterned features lie at least partially in locations that are underlying the plurality of input/output metallization pads. The portions of the plurality of patterned features are composite metallization regions that have a plurality of deformation preventing oxide patterns that are resistant to compression force induced plastic deformation that occurs when the plurality of gold bonding wires are applied.