摘要:
A gate driving circuit and a display apparatus having the gate driving circuit include a pull-up part and a carry part pull up a present gate signal and a present carry signal, respectively, to a first clock during a first period within one frame. A pull-down part receives a next gate signal to discharge the present gate signal to a source power voltage. A pull-up driving part is connected to control terminals of the carry part and pull-up part (Q-node) to turn the carry part and pull-up part on and off. A floating preventing part prevents an output terminal of the carry part from being floated in response to the first clock during a second period within the one frame.
摘要:
In a gate driving circuit and a display apparatus having the same, a ripple preventing part is connected to a pull-up part and a control terminal (Q-node) to reset the Q-node. The ripple preventing part includes a first ripple preventing device that resets the Q-node during a high period of the first clock within a (n−1)H period, and a second ripple preventing device that resets the Q-node during a high period of a second clock within the (n−1)H period. A back-flow preventing device is connected between a previous carry node and the second ripple preventing device to prevent an electric charge of the Q-node from flowing back to the previous carry node.
摘要:
In a gate driving circuit and a display apparatus having the same, a ripple preventing part is connected to a pull-up part and a control terminal (Q-node) to reset the Q-node. The ripple preventing part includes a first ripple preventing device that resets the Q-node during a high period of the first clock within a (n−1)H period, and a second ripple preventing device that resets the Q-node during a high period of a second clock within the (n−1)H period. A back-flow preventing device is connected between a previous carry node and the second ripple preventing device to prevent an electric charge of the Q-node from flowing back to the previous carry node.
摘要:
A gate driving circuit includes stages, the stages being cascaded and each including: a pull-up part which pulls up a gate voltage to a clock signal during a horizontal scanning period (1H); a carry part which pulls up a carry voltage to the clock signal during the horizontal scanning period (1H); a pull-up driving part connected to a control terminal (Q-node) common to the carry part and the pull-up part and which receives a previous carry voltage from a first previous stage to turn on the pull-up part and the carry part; and a ripple preventing part which prevents a ripple generated at a previous Q-node of a second previous stage based on a ripple generated at the Q-node of the carry part and the pull-up part.
摘要:
A display substrate includes a base substrate, a first line, a second line, a bridge line, a thin-film transistor (TFT), a storage line, and a pixel electrode. The first line extends in a first direction on the base substrate. The second line extends in a second direction on the base substrate and is divided into two portions with respect to the first line. The bridge line makes contact with the two portions of the second line in first and second bridge contact regions. The TFT includes a source electrode making contact with one of the first and second lines in a data contact region. The storage line is formed on the one of the first and second lines. The pixel electrode is formed on the storage line and is electrically connected to the TFT. The display substrate reduces formation of parasitic capacitance between pixel electrode and data line.
摘要:
A display substrate includes a base substrate, a first line, a second line, a bridge line, a thin-film transistor (TFT), a storage line, and a pixel electrode. The first line extends in a first direction on the base substrate. The second line extends in a second direction on the base substrate and is divided into two portions with respect to the first line. The bridge line makes contact with the two portions of the second line in first and second bridge contact regions. The TFT includes a source electrode making contact with one of the first and second lines in a data contact region. The storage line is formed on the one of the first and second lines. The pixel electrode is formed on the storage line and is electrically connected to the TFT. The display substrate reduces formation of parasitic capacitance between pixel electrode and data line.
摘要:
A pull-up driving part maintains a signal of a first node at a high level by receiving a turn-on voltage in response to one of a previous stage or a vertical start signal. A pull-up part outputs a clock signal through an output terminal in response to the signal of the first node. A first holding part maintains a signal of a second node at a high level or a low level when the signal of the first node is respectively low or high. A second holding part maintains the signal of the first node and a signal of the output terminal at a ground voltage in response to the signal of the second node or a delayed and inverted clock signal.
摘要:
A pull-up driving part maintains a signal of a first node at a high level by receiving a turn-on voltage in response to one of a previous stage or a vertical start signal. A pull-up part outputs a clock signal through an output terminal in response to the signal of the first node. A first holding part maintains a signal of a second node at a high level or a low level when the signal of the first node is respectively low or high. A second holding part maintains the signal of the first node and a signal of the output terminal at a ground voltage in response to the signal of the second node or a delayed and inverted clock signal.
摘要:
A liquid crystal display (“LCD”) device includes a display panel, a data driving part, and at least one first light-blocking part and at least one second light-blocking part. The display panel includes a plurality of pixels and a plurality of data lines. The pixels are arranged in a column direction and a row direction. At least one of the data lines extends in a zigzag shape along the column direction to be discontinuously disposed between two adjacent columns of the pixels. The at least one data line is electrically connected to two of the pixels that are adjacent in the row direction. The second light-blocking part is thinner than the first light-blocking part. The first light-blocking part and the second light-blocking are repeatedly disposed on an area between two adjacent columns of the pixels. The data driving part applies a data signal to the data lines.
摘要:
Disclosed is a liquid crystal display device including a first substrate, a second substrate, and a liquid crystal layer interposed there between. The first substrate is provided with gate lines and data lines thereon. The gate lines and data lines cross with each other and are insulated from each other. Pixel electrodes are stacked on the gate lines and data lines. Each pixel electrode includes first and second sub-pixel electrodes spaced apart from each other and a connection electrode, which connects the first sub-pixel electrode to the second sub-pixel electrode. The second substrate is provided with a common electrode thereon. The common electrode includes a first domain divider formed on the center of the first sub-pixel electrode and a second domain divider formed on the center of the second sub-pixel electrode.