Abstract:
The present invention provides a method and a device for automatic inclination compensation of solar sunlight tracing panel. The device includes a plurality of solar panels adjacent to each other and capable of swinging towards sun. Two or more light sensors are separately installed on the light receiving end surface to be illuminated by sunlight and to generate electric potential signals. When comparing the electric potential signals and there is potential difference, the solar panels are driven to synchronically swing until the electric potential of the electric potential signal become the same. Thus the solar plane inclination is compensated and the whole light receiving end is illuminated by sun.
Abstract:
A solar module for greenhouse includes a plurality of non-light transmitting solar panels, installed at the top of a greenhouse and arranged vertically and horizontally to form a roof tilted in a particular light receiving direction. A planting area for growing plants is formed inside of the greenhouse and the roof separates the planting area from outside air. Thus, an integrated structure of solar panels and greenhouse is formed to save the construction expense for solar panels and greenhouse and to increase the efficiency for solar panels to receive sun radiation.
Abstract:
The present invention provides a method and a device for automatic inclination compensation of solar sunlight tracing panel. The device includes a plurality of solar panels adjacent to each other and capable of swinging towards sun. Two or more light sensors are separately installed on the light receiving end surface to be illuminated by sunlight and to generate electric potential signals. When comparing the electric potential signals and there is potential difference, the solar panels are driven to synchronically swing until the electric potential of the electric potential signal become the same. Thus the solar plane inclination is compensated and the whole light receiving end is illuminated by sun.
Abstract:
A greenhouse shelf structure with modularized solar power facility includes a greenhouse shelf set between two neighboring standing pillars. The greenhouse shelf is a wave form shelf or a ridge form shelf. The standing pillar connects to a connector, and the side end of the connector connects the greenhouse shelf. The top of the connector connects a solar panel support. Accordingly, the solar panel support and the greenhouse shelf are integrated into a whole assembly by the modularized combination, and the place where the greenhouse situated can also be provided with a solar panel to receive the solar power to generate the electricity, which further fulfills the electricity requirement of the greenhouse or other devices.
Abstract:
A greenhouse shelf structure with modularized solar power facility includes a greenhouse shelf set between two neighboring standing pillars. The greenhouse shelf is a wave form shelf or a ridge form shelf. The standing pillar connects to a connector, and the side end of the connector connects the greenhouse shelf. The top of the connector connects a solar panel support. Accordingly, the solar panel support and the greenhouse shelf are integrated into a whole assembly by the modularized combination, and the place where the greenhouse situated can also be provided with a solar panel to receive the solar power to generate the electricity, which further fulfills the electricity requirement of the greenhouse or other devices.