Abstract:
An infrared absorption film includes a polymer resin substrate, a polymer dispersant and an infrared absorption material. The infrared absorption material has a plurality of tungsten oxide and/or composite tungsten oxide nanoparticles dispersed in the polymer resin substrate by the polymer dispersant, wherein a weight ratio of the polymer dispersant to the infrared absorption material is between 0.3 and 0.6.
Abstract:
An infrared absorption film includes a polymer resin substrate, a polymer dispersant and an infrared absorption material. The infrared absorption material has a plurality of tungsten oxide and/or composite tungsten oxide nanoparticles dispersed in the polymer resin substrate by the polymer dispersant, wherein a weight ratio of the polymer dispersant to the infrared absorption material is between 0.3 and 0.6.
Abstract:
The near-infrared radiation absorbing masterbatch provided is prepared by melt-extruding a mixture comprising near-infrared radiation absorbing particles and a first polymer. The particles have a near-infrared absorption at a wavelength ranging from 0.7 μm to 2 μm and a far-infrared emissivity equal to or more than 0.85. The near-infrared light radiated by the particles has a wavelength ranging from 2 μm to 22 μm. Accordingly, the product made from the masterbatch, such as the near-infrared radiation absorbing fiber, plate, or film can not only absorb sunlight and store heat, but also radiate far-infrared light. Hence, the product has a thermal effect for keeping the human body warm and can serve as indoor and outdoor heat storing products at the same time.