Transverse vibration rolling system and preparation method for double-layer metal composite ultra-thin strip

    公开(公告)号:US20210379634A1

    公开(公告)日:2021-12-09

    申请号:US17410794

    申请日:2021-08-24

    Abstract: A transverse vibration rolling system and a preparation method for a double-layer metal composite ultra-thin strip relate to a technical field of rolling, which solve problems including poor rolling and bonding effects, low geometric accuracy, and poor plate shape quality of metal composite ultra-thin strips. The transverse vibration rolling system includes: a first roll, a second roll, a first hydraulic vibrator, a second hydraulic vibrator, a first hydraulic motor, a second hydraulic motor, a check valve, a first hydraulic pump, a first overflow valve, an oil tank, a controller, a second overflow valve, a second hydraulic pump, an electromagnetic reversing valve, a first speed control valve, and a second speed control valve. The transverse vibration of the rolls of the present invention can apply transverse shearing force on the ultra-thin metal strips during the bond rolling.

    Method for inflating micro-channels

    公开(公告)号:US20210292159A1

    公开(公告)日:2021-09-23

    申请号:US17339886

    申请日:2021-06-04

    Abstract: The invention belongs to the technical field of metal micro-forming, and in particular relates to a method for inflating micro-channels. The present invention is aimed at the problems of low process flexibility, single product type, and non-closed structure of the micro-channel when preparing metal micro-channels by micro-plastic forming of ultra-thin metal strips. The present invention uses a method combining numerical simulation and bond rolling experiment to analyze the effect of the hydrogen pressure and bond strength of the metal composite ultra-thin strip after bond rolling on the pore diameter of the micro-channel, and the corresponding relationship between the micro-channel pore diameter and the titanium hydride content, heating temperature, and bond strength of the metal composite ultra-thin strip is obtained. The present invention has no special requirements on molds, wide selection of metal materials, low requirements for equipment capabilities; closed tubular micro-channel products with different pore diameters and different distributions can be prepared according to requirements, with rich product categories and high process flexibility.

Patent Agency Ranking