Abstract:
The present invention provides a steam reforming process for heavy oil or hydrocarbons using a circulating fluidized bed reactor, the process having a reforming step and a regeneration step, wherein the reforming step and the regeneration step comprise a fluidized reactor containing a fluidizable nickel-containing reforming catalyst and produce hydrogen as a product of the reforming bed. The invention produces high purity hydrogen in the synthesis gas product stream and avoids irreversible fouling on the catalyst.
Abstract:
A wearable breathing apparatus includes a thermal capacitor that a user inhales and exhales through. Inhaled air is cooled as it passes through the thermal capacitor, and exhaled air cools the material of the thermal capacitor for the next breathing cycle. The breathing apparatus may be used by a firefighter, for example, as a lightweight apparatus to enable the firefighter to safely breathe dangerously heated air, for example while in a fire shelter, that may otherwise cause injury to the user. The breathing apparatus advantageously does not require external power for cooling. The thermal capacitor may also be used as a part of a rebreather that uses a scrubber that removes carbon dioxide from exhaled air, for rebreathing. Further, the thermal capacitor may be used for other purposes, such as in recirculation of building air.
Abstract:
A composite material for mitigating blast shockwave energy, comprising a rubber compound layer impregnated with a shear thickening fluid. The layered composite material comprises a first layer of soft foam, a second layer of hard foam, a third layer of thermoset or thermoplastic compound, and a fourth layer of the rubber compound. The layered composite material does not comprise any fibers or yarns. The layers are bound together and have a total height of less than 0.85 inches. It attenuates up to 80% of an incident blast shockwave impulse and up to 61% of an incident blast shockwave pressure for an incident blast shockwave of 50 psi. A helmet liner made of the layered composite material and capable of fitting a helmet such there are no gaps between the user's head and the helmet during use. The helmet liner may be a flat headband that folds into a helmet's edges.
Abstract:
The present invention relates to a carbon sorbent the can selectively remove platinum-group metals and other heavy metals such as tin without co-removing organic synthesis products including pharmaceutical intermediates and finished Active Pharmaceutical Ingredients (APIs). The carbon sorbents of the present invention are made from low-cost, high purity starting materials and the resulting carbon sorbents are also very pure. The carbon sorbents possess a combination of certain nitrogen and phosphorous groups combined with mesoporosity (2 to 50 nm diameter pores) that proves the high metal adsorption.
Abstract:
A thermally luminescent temperature sensor with a rare earth emitter having a first selective electromagnetic light energy emission band and a second selective electromagnetic light energy emission band in which the rare earth emitter converts thermal energy to electromagnetic light energy within the first and second selective energy emission bands. The sensor also has a selective optical detector in optical communication with the rare earth emitter, wherein the selective optical detector independently detects each the first and second selective electromagnetic light energy emission bands. Lastly, the thermally luminescent temperature sensor determines the temperature based on the electromagnetic light energy measured within the first and second selective energy emission bands relative to each other. Optionally additional emission bands may be used in the evaluation of the temperature.
Abstract:
The present invention relates to a carbon sorbent the can selectively remove platinum-group metals and other heavy metals such as tin without co-removing organic synthesis products including pharmaceutical intermediates and finished Active Pharmaceutical Ingredients (APIs). The carbon sorbents of the present invention are made from low-cost, high purity starting materials and the resulting carbon sorbents are also very pure. The carbon sorbents possess a combination of certain nitrogen and phosphorous groups combined with mesoporosity (2 to 50 nm diameter pores) that proves the high metal adsorption.
Abstract:
A seasonal process that captures stores and uses water in an ambient temperature-dependent manner to improve the efficiency of a natural gas power plant, comprising: (a) providing a natural gas power plant, the natural gas power plant having a flue gas stream, a cooling tower, and a gas turbine; (b) providing a water collection system; (c) providing a water storage facility; wherein the flue gas stream comprises uncondensed water vapor; wherein the water collection system is operably connected to the flue gas stream and the flue gas stream is directed to flow, at least in part, into the water collection system; wherein the water collection system is operably connected to the water storage facility; wherein the water storage facility is operably connected to the cooling tower and the water storage facility is operably connected to the gas turbine; wherein the process comprises the following steps of condensing flue gas water or using water that has been condensed from the flue gas stream based on outdoor ambient dry bulb temperature: (I) Only condensing water from the flue gas stream to produce a condensed water stream if outdoor ambient dry bulb temperature is less than 85° F.; (II) Only using condensed water to spray cool the cooling tower if outdoor ambient dry bulb temperature is at least 85° F.; (III) Only using condensed water to fog cool the gas turbine if outdoor ambient dry bulb temperature is at least 55° F.; wherein condensed water that is not immediately used to cool the cooling tower or to fog cool the gas turbine is stored in the water storage facility; and wherein the process uses a total amount of water on an annual basis to cool the cooling tower and to fog cool the gas turbine that does not exceed the annual amount of water condensed from the flue gas stream. Optionally, the process has a cooling tower that is a dry cooling tower and condensed water is used to spray cool the dry cooling tower, or the cooling tower is a wet cooling tower, or the cooling tower is a hybrid wet-dry cooling tower. The process may further comprise a water collection system having a three stage desiccant cycle and a calcium chloride desiccant that recovers at least about 60 wt % of the water from the flue gas, operates at or above ambient pressure or comprises plastic piping or plastic vessels. Or the process may further comprise using a water collection system having at least one direct contact condensing column that recovers at least about 60 wt % of the water from the flue gas, operates at or above ambient pressure or comprises plastic piping or plastic vessels. Or the process may further comprise using a water collection system having at least one direct contact condenser and a rotating wheel heat exchanger that recovers at least about 60 wt % of the water from the flue gas, operates at or above ambient pressure, or further comprises plastic piping or plastic vessels. The coefficient of performance for the cooling process is optionally at least 2.0.
Abstract:
The present invention provides a steam reforming process for heavy oil or hydrocarbons using a circulating fluidized bed reactor, the process having a reforming step and a regeneration step, wherein the reforming step and the regeneration step comprise a bubbling fluidized reactor containing a fluidizable nickel-containing reforming catalyst and produce hydrogen as a product of the reforming bed. The API gravity of the feedstock may be between −11 and 54, preferably between −11 and 20. The present invention also provides a fluidized bed hydrocarbon steam reforming process using a regenerable catalyst to produce hydrogen, wherein a circulating bed reactor is operated in an alternating manner, switching between two steps: reforming and regeneration; using a mixture of a fluidizable solid and a fluidizable nickel-containing reforming catalyst; producing hydrogen as a product of the reforming step with a minimum hydrogen content of 25 volume percent, preferably at least 60 volume % and more preferably at least 70 volume percent on a dry weight basis.
Abstract:
The present invention relates to a cooling garment, comprising: a moisture-wicking under layer; and an impermeable outer layer, wherein the impermeable outer layer is attached to the moisture-wicking under layer forming at least one channel within the garment having a wetted perimeter of at most 5 inches; and an above ambient pressure gas supply operably attached to the channel. The present invention also relates to the cooling shirt or vest garment, comprising: a moisture-wicking under layer and an impermeable outer layer, wherein the outer layer is attached to the under layer forming a plurality of channels.
Abstract:
A wearable breathing apparatus includes a thermal capacitor that a user inhales and exhales through. Inhaled air is cooled as it passes through the thermal capacitor, and exhaled air cools the material of the thermal capacitor for the next breathing cycle. The breathing apparatus may be used by a firefighter, for example, as a lightweight apparatus to enable the firefighter to safely breathe dangerously heated air, for example while in a fire shelter, that may otherwise cause injury to the user. The breathing apparatus advantageously does not require external power for cooling. The thermal capacitor may also be used as a part of a rebreather that uses a scrubber that removes carbon dioxide from exhaled air, for rebreathing. Further, the thermal capacitor may be used for other purposes, such as in recirculation of building air.