Abstract:
Methods and apparatus for providing a time-interleaved current-feedback droop function for multiphase buck converters. An example method includes outputting a first control signal to enable a first set of switches corresponding to a first voltage of a first phase from a multiphase converter, the first phase included in a plurality of phases; enabling a first current associated with the first phase to be measured by a sample and hold circuit associated with the first phase; sampling the first current; holding the first current, the first current based on a load current for the first phase of the multiphase converter; and outputting a droop voltage based on a plurality of currents corresponding to the plurality of phases of the multiphase converter, the plurality of currents including the load current for the first phase.
Abstract:
Methods and apparatus for providing a time-interleaved current-feedback droop function for multiphase buck converters. An example method includes outputting a first control signal to enable a first set of switches corresponding to a first voltage of a first phase from a multiphase converter, the first phase included in a plurality of phases; enabling a first current associated with the first phase to be measured by a sample and hold circuit associated with the first phase; sampling the first current; holding the first current, the first current based on a load current for the first phase of the multiphase converter; and outputting a droop voltage based on a plurality of currents corresponding to the plurality of phases of the multiphase converter, the plurality of currents including the load current for the first phase.
Abstract:
Methods and apparatus for providing a time-interleaved current-feedback droop function for multiphase buck converters. An example method includes outputting a first control signal to enable a first set of switches corresponding to a first voltage of a first phase from a multiphase converter, the first phase included in a plurality of phases; enabling a first current associated with the first phase to be measured by a sample and hold circuit associated with the first phase; sampling the first current; holding the first current, the first current based on a load current for the first phase of the multiphase converter; and outputting a droop voltage based on a plurality of currents corresponding to the plurality of phases of the multiphase converter, the plurality of currents including the load current for the first phase.
Abstract:
A device includes a transformer, a controller, and a switch coupled between the transformer and the controller. The transformer has a primary coil and a secondary coil. The controller receives an indication of a metric of a cell of a battery. In response to the indication, the controller outputs a signal to select a polarity of a balancing current for balancing the cell. The switch receives the signal from the controller. In response to the signal, the switch causes the transformer to generate a primary current of a selected polarity through the primary coil. The transformer generates the balancing current through the secondary coil by inductively coupling the primary coil to the secondary coil. The transformer outputs the balancing current having the polarity for balancing the cell.
Abstract:
Methods and apparatus for providing a time-interleaved current-feedback droop function for multiphase buck converters. An example method includes outputting a first control signal to enable a first set of switches corresponding to a first voltage of a first phase from a multiphase converter, the first phase included in a plurality of phases; enabling a first current associated with the first phase to be measured by a sample and hold circuit associated with the first phase; sampling the first current; holding the first current, the first current based on a load current for the first phase of the multiphase converter; and outputting a droop voltage based on a plurality of currents corresponding to the plurality of phases of the multiphase converter, the plurality of currents including the load current for the first phase.
Abstract:
An apparatus includes multiple first channels configured to be coupled to a first boost capacitor and multiple second channels configured to be coupled to a second boost capacitor. Each channel includes a transistor switch and a gate driver configured to drive the transistor switch. The gate drivers in the first channels include switch sub-arrays configured to control which transistor switch in the first channels is driven using a voltage from the first boost capacitor. The gate drivers in the second channels include switch sub-arrays configured to control which transistor switch in the second channels is driven using a voltage from the second boost capacitor. The transistor switch in each channel may include first and second transistors having their sources coupled together, and each of the channels may further include a pull-down switch configured to pull the sources of the first and second transistors to ground.