Abstract:
A thyristor or triac control circuit includes a first capacitive element that is series-connected with a first diode between a first terminal and a second terminal intended to be coupled to a gate of the thyristor or triac. A second capacitive element is coupled between the second terminal and a third terminal intended to be connected to a conduction terminal of the thyristor or triac on the gate side of the thyristor or triac. A second diode is coupled between the third terminal and a node of connection of the first capacitive element and first diode.
Abstract:
A power switching device includes a primary power source, a backup power source, and a power switching circuit, and the power switching circuit can switch rapidly between the two or more power sources. The power switching circuit includes a first switching module, a second switching module, and a control module. The first switching module includes first through fourth relays, and first through fourth driving units. The first switching module also includes a first bidirectional thyristor and a second bidirectional thyristor. A power switching circuit is also provided.
Abstract:
Light-dimming device includes: first and second terminals; switch including switching device connected between terminals; adjuster for varying conduction angle of switch; controller for controlling switch and power supply module for supplying power to controller. Controller includes zero-cross detection circuit for detecting zero-cross of AC voltage, control circuit for generating PWM signal of on-duty ratio corresponding to conduction angle from adjuster, and driver circuit for turning device on and off by PWM signal. Controller allows device to conduct and then turn off within variable period of time, from start of half cycle of AC voltage, shorter than half cycle. Circuit starts generation of pulse in PWM signal when prescribed period of time, shorter than variable period of time, from zero-cross of voltage elapses.
Abstract:
A system for measuring soft starter current includes a current monitoring system having a controller and a current transfer device that includes a first sold state switching device. A first current sensor is coupled to the first solid state switching device and the controller to sense off-state current of the first solid state switching device. The controller is configured to determine an operational status of the first solid state switching device.
Abstract:
An apparatus includes multiple first channels configured to be coupled to a first boost capacitor and multiple second channels configured to be coupled to a second boost capacitor. Each channel includes a transistor switch and a gate driver configured to drive the transistor switch. The gate drivers in the first channels include switch sub-arrays configured to control which transistor switch in the first channels is driven using a voltage from the first boost capacitor. The gate drivers in the second channels include switch sub-arrays configured to control which transistor switch in the second channels is driven using a voltage from the second boost capacitor. The transistor switch in each channel may include first and second transistors having their sources coupled together, and each of the channels may further include a pull-down switch configured to pull the sources of the first and second transistors to ground.
Abstract:
A circuit and method protect switching devices from alternating current overload. By protecting the switching devices from AC overload, the reliability of the equipment using the switching devices is improved, cost for repair is decreased and information regarding the cause of the AC overload is available.
Abstract:
Featured is igniter control circuitry that reduces the line voltage to the igniter and which maintains the igniter voltage relatively stable. More particularly, there is featured, a thyristor-based phase control circuit that reduces the RMS voltage being applied to an igniter when it is connected to the AC line or line voltage. The circuitry also is configured so that it opposes changes in line voltage such that the igniter voltage remains relatively stable when the line voltage increases or decreases relative to its nominal level. Such control circuitry includes a dual diac configuration, a relation oscillator configuration and one embodying both dual diac and relation oscillator configurations.
Abstract:
A method and a circuit for detecting an overheating of an electronic switch of power supply of a load by an A.C. voltage, in which a voltage representative of the temperature in the vicinity of the switch is compared with a threshold, the result of this comparison being sampled at frequency corresponding to an even multiple of the frequency of the A.C. power supply voltage, to provide a signal indicative of the fact that a temperature threshold has been exceeded.
Abstract:
A compressor having a winding circuit and a driven member being driven in part by a winding of the winding circuit. The compressor further includes an auxiliary circuit connected in a parallel relationship with the winding circuit. The auxiliary circuit has an auxiliary circuit element and an electronic switch assembly connected in a series relationship such that the electronic switch assembly controls the current through the auxiliary circuit element.
Abstract:
A bidirectional switch, including a first bidirectional switch between two power terminals of the switch, a low-voltage storage element between a first power terminal and a control terminal of the switch, and a control stage adapted to cause, upon each halfwave beginning of an A.C. supply voltage applied between the power terminals and when the switch is on, the charge of the storage element with a biasing depending on the sign of the halfwave.