Abstract:
In an embodiment, a circuit configured for asymmetric ageing prevention in an integrated circuit (IC) comprises a primary clock configured to generate a primary clock signal, a secondary clock configured to generate a secondary clock signal, a state determination circuit, and a control circuit. The state determination circuit is configured to determine a current operating state associated with at least one of a primary clock condition and a power-on-reset condition in the IC. The control circuit is configured to generate a control signal in response to a determination of an first operating state. The control signal is configured to facilitate a transition from the primary clock to the secondary clock upon determination of the first operating state, and a transition from a safe operating mode to a normal operating mode upon determination of a second operating state. The secondary clock is associated with a safe operating mode of the IC.
Abstract:
In an embodiment, a circuit configured for asymmetric ageing prevention in an integrated circuit (IC) comprises a primary clock configured to generate a primary clock signal, a secondary clock configured to generate a secondary clock signal, a state determination circuit, and a control circuit. The state determination circuit is configured to determine a current operating state associated with at least one of a primary clock condition and a power-on-reset condition in the IC. The control circuit is configured to generate a control signal in response to a determination of an first operating state. The control signal is configured to facilitate a transition from the primary clock to the secondary clock upon determination of the first operating state, and a transition from a safe operating mode to a normal operating mode upon determination of a second operating state. The secondary clock is associated with a safe operating mode of the IC.
Abstract:
Apparatuses and methods for phase aligning at least two clocks used by respective first and second circuitry systems, such as a memory controller and a DDR PHY interface in a system on a chip system. A first circuit samples a phase of a first clock used by the first circuitry system, and then a delay circuit selectively delays a second clock used by the second circuitry system and sets a delayed timing of the second clock. To economize resources and reduce chip area, a logic circuit receives the sampled phase of the first clock, determines which delayed timing matches timing of the sampled phase, and sets the delay circuit to a fixed delayed timing corresponding to the delayed timing that matches the sampled phase. Thus, phase alignment of the two clocks is achieved with fewer resources.
Abstract:
Apparatuses and methods for phase aligning at least two clocks used by respective first and second circuitry systems, such as a memory controller and a DDR PHY interface in a system on a chip system. A first circuit samples a phase of a first clock used by the first circuitry system, and then a delay circuit selectively delays a second clock used by the second circuitry system and sets a delayed timing of the second clock. To economize resources and reduce chip area, a logic circuit receives the sampled phase of the first clock, determines which delayed timing matches timing of the sampled phase, and sets the delay circuit to a fixed delayed timing corresponding to the delayed timing that matches the sampled phase. Thus, phase alignment of the two clocks is achieved with fewer resources.