Abstract:
Disclosed examples include methods and circuits to drive a haptic actuator, in which a single input signal from a host device has a first state representing a command to drive the actuator and a second state representing a command to stop the actuator. A control circuit provides a drive control signal to a driver circuit to drive the haptic actuator in response to the control signal transitioning to the first state, and to stop the haptic actuator in response to the control signal transitioning to the second state. A timer circuit places the circuit in a low power mode a predetermined time after the control signal transitions to the second state, or the control circuit places the circuit in the low power mode in response to a feedback signal indicating that the actuator has reached a stopped condition.
Abstract:
Disclosed examples include methods and circuits to drive a haptic actuator, in which a single input signal from a host device has a first state representing a command to drive the actuator and a second state representing a command to stop the actuator. A control circuit provides a drive control signal to a driver circuit to drive the haptic actuator in response to the control signal transitioning to the first state, and to stop the haptic actuator in response to the control signal transitioning to the second state. A timer circuit places the circuit in a low power mode a predetermined time after the control signal transitions to the second state, or the control circuit places the circuit in the low power mode in response to a feedback signal indicating that the actuator has reached a stopped condition.
Abstract:
An integrated force sensing element includes a piezoelectric sensor formed in an integrated circuit (IC) chip and a strain gauge at least partially overlying the piezoelectric sensor, where the piezoelectric sensor is able to flex. A human-machine interface using the integrated force sensing element is also disclosed and may include a conditioning circuit, temperature gauge, FRAM and a processor core.
Abstract:
An integrated force sensing element includes a piezoelectric sensor formed in an integrated circuit (IC) chip and a strain gauge at least partially overlying the piezoelectric sensor, where the piezoelectric sensor is able to flex. A human-machine interface using the integrated force sensing element may include a conditioning circuit, temperature gauge, FRAM and a processor core.
Abstract:
An integrated force sensing element includes a piezoelectric sensor formed in an integrated circuit (IC) chip and a strain gauge at least partially overlying the piezoelectric sensor, where the piezoelectric sensor is able to flex. A human-machine interface using the integrated force sensing element is also disclosed and may include a conditioning circuit, temperature gauge, FRAM and a processor core.
Abstract:
Disclosed examples include methods and circuits to drive a haptic actuator, in which a single input signal from a host device has a first state representing a command to drive the actuator and a second state representing a command to stop the actuator. A control circuit provides a drive control signal to a driver circuit to drive the haptic actuator in response to the control signal transitioning to the first state, and to stop the haptic actuator in response to the control signal transitioning to the second state. A timer circuit places the circuit in a low power mode a predetermined time after the control signal transitions to the second state, or the control circuit places the circuit in the low power mode in response to a feedback signal indicating that the actuator has reached a stopped condition.
Abstract:
An integrated force sensing element includes a piezoelectric sensor formed in an integrated circuit (IC) chip and a strain gauge at least partially overlying the piezoelectric sensor, where the piezoelectric sensor is able to flex. A human-machine interface using the integrated force sensing element is also disclosed and may include a conditioning circuit, temperature gauge, FRAM and a processor core.
Abstract:
Disclosed examples include methods and circuits to drive a haptic actuator, in which a single input signal from a host device has a first state representing a command to drive the actuator and a second state representing a command to stop the actuator. A control circuit provides a drive control signal to a driver circuit to drive the haptic actuator in response to the control signal transitioning to the first state, and to stop the haptic actuator in response to the control signal transitioning to the second state. A timer circuit places the circuit in a low power mode a predetermined time after the control signal transitions to the second state, or the control circuit places the circuit in the low power mode in response to a feedback signal indicating that the actuator has reached a stopped condition.