Abstract:
A first apparatus includes a vapor cell having first and second cavities fluidly connected by multiple channels. The first cavity is configured to receive a material able to dissociate into one or more gases that are contained within the vapor cell. The second cavity is configured to receive the one or more gases. The vapor cell is configured to allow radiation to pass through the second cavity. A second apparatus includes a vapor cell having a first wafer with first and second cavities and a second wafer with one or more channels fluidly connecting the cavities. The first cavity is configured to receive a material able to dissociate into one or more gases that are contained within the vapor cell. The second cavity is configured to receive the one or more gases. The vapor cell is configured to allow radiation to pass through the second cavity.
Abstract:
An apparatus includes a vapor cell having multiple cavities fluidly connected by one or more channels. At least one of the cavities is configured to receive a first material able to dissociate into one or more gases that are contained within the vapor cell. At least one of the cavities is configured to receive a second material able to absorb at least a portion of the one or more gases. The vapor cell could include a first cavity configured to receive the first material and a second cavity fluidly connected to the first cavity by at least one first channel, where the second cavity is configured to receive the gas(es). The vapor cell could also include a third cavity fluidly connected to at least one of the first and second cavities by at least one second channel, where the third cavity is configured to receive the second material.
Abstract:
A first apparatus includes a vapor cell having first and second cavities fluidly connected by multiple channels. The first cavity is configured to receive a material able to dissociate into one or more gases that are contained within the vapor cell. The second cavity is configured to receive the one or more gases. The vapor cell is configured to allow radiation to pass through the second cavity. A second apparatus includes a vapor cell having a first wafer with first and second cavities and a second wafer with one or more channels fluidly connecting the cavities. The first cavity is configured to receive a material able to dissociate into one or more gases that are contained within the vapor cell. The second cavity is configured to receive the one or more gases. The vapor cell is configured to allow radiation to pass through the second cavity.
Abstract:
A microfabricated atomic clock (mfac) or magnetometer (mfam) vapor cell utilizing a method of forming a self-condensing silicon vapor cell cavity structure for the atomic clock or magnetometer.
Abstract:
A vapor cell for installation in an atomic clock or a magnetometer. The vapor cell includes a top plate, a center plate, and a bottom plate defining a cavity for passing light along an optical path. The vapor cell includes one or more condensation sites to trap condensed vapor in order to avoid blockage of the optical path.
Abstract:
A method of providing a manufactureable long vapor cell with enhanced sensitivity and good mechanical strength, wherein the method provides a structure that increases the overall length of the vapor cell.
Abstract:
A micro-fabricated atomic clock structure is thermally insulated so that the atomic clock structure can operate with very little power in an environment where the external temperature can drop to −40° C., while at the same time maintaining the temperature required for the proper operation of the VCSEL and the gas within the vapor cell.
Abstract:
An apparatus includes a vapor cell having multiple cavities fluidly connected by one or more channels. At least one of the cavities is configured to receive a first material able to dissociate into one or more gases that are contained within the vapor cell. At least one of the cavities is configured to receive a second material able to absorb at least a portion of the one or more gases. The vapor cell could include a first cavity configured to receive the first material and a second cavity fluidly connected to the first cavity by at least one first channel, where the second cavity is configured to receive the gas(es). The vapor cell could also include a third cavity fluidly connected to at least one of the first and second cavities by at least one second channel, where the third cavity is configured to receive the second material.
Abstract:
A micro-fabricated atomic clock structure is thermally insulated so that the atomic clock structure can operate with very little power in an environment where the external temperature can drop to −40° C., while at the same time maintaining the temperature required for the proper operation of the VCSEL and the gas within the vapor cell.
Abstract:
A first apparatus includes a vapor cell having first and second cavities fluidly connected by multiple channels. The first cavity is configured to receive a material able to dissociate into one or more gases that are contained within the vapor cell. The second cavity is configured to receive the one or more gases. The vapor cell is configured to allow radiation to pass through the second cavity. A second apparatus includes a vapor cell having a first wafer with first and second cavities and a second wafer with one or more channels fluidly connecting the cavities. The first cavity is configured to receive a material able to dissociate into one or more gases that are contained within the vapor cell. The second cavity is configured to receive the one or more gases. The vapor cell is configured to allow radiation to pass through the second cavity.