Abstract:
A circuit for controlling a switched-mode DC-DC converter. An inductor is connected between a switching node and an output node, and an output capacitor is connected in series with the inductor. An RC circuit is connected in parallel with the inductor to compensate for ripple voltage. In a discontinuous current mode, a pulse is applied to the switching node and then removed. In this mode, an RC time constant for the RC circuit is increased during the falling edge of a difference signal such that the difference signal does not drop below zero.
Abstract:
An example apparatus includes: a first switch having a first terminal coupled to a switch terminal and a second terminal coupled to a current sense positive (CSP) terminal; a second switch coupled to the CSP terminal and to a first resistor; the first resistor coupled to the second switch and to ground; a first capacitor having a positive terminal coupled to the CSP terminal and a negative terminal coupled to ground; a second resistor coupled to the CSP terminal and to a current sense negative (CSN) terminal; a second capacitor coupled to the CSN terminal and coupled to ground; a third switch coupled to the CSP terminal and a third resistor; the third resistor having coupled to the third switch and a voltage source; and the voltage source coupled to the third resistor and to ground.
Abstract:
A current sense circuit includes a sense amplifier, a current mirror circuit, a resistor, a low-pass filter, and a capacitor. The sense amplifier is adapted to be coupled to a switching transistor of a DC-DC converter. The current mirror circuit is coupled to the sense amplifier, and is configured to generate a sense current proportional to a current flowing through the switching transistor. The resistor is coupled to the current mirror circuit, and is configured to generate a sense voltage based on the sense current. The low-pass filter is coupled to the resistor, and is configured to average the sense voltage over an averaging interval. The capacitor is coupled to the resistor, and is configured to store the sense voltage in a blanking interval that precedes the averaging interval, and provide a compensation current in the averaging interval.
Abstract:
A circuit includes an inductor that receives a switched input voltage to provide an output for driving a load. A driver circuit drives the switched input voltage to the inductor in response to input pulses. A ramp circuit coupled to the inductor generates a ramp signal emulating current of the inductor. A control circuit generates the input pulses to control the driver circuit based on the ramp signal and the output for driving the load. A transient monitoring circuit monitors the output with respect to a predetermined threshold and adjusts the ramp circuit based on the output relative to the predetermined threshold to control the emulated current of the inductor to facilitate jitter and load transient performance.
Abstract:
A voltage converter (FIG. 4) for a power supply circuit is disclosed. The voltage converter comprises a control circuit (400) coupled to receive an enable (EN) signal. The control circuit produces a first control signal (PWM) to provide a load current (IL) in response to the enable signal. A sample and hold circuit (408) is arranged to produce a third control signal (CSP) to emulate the load current and a fourth control signal (CSN′) to sample and hold value of the third control signal. A comparator circuit (416) is arranged to compare the third and fourth control signals and produce the enable signal in response to a result of the comparison.
Abstract:
A voltage converter (FIG. 4) for a power supply circuit is disclosed. The voltage converter comprises a control circuit (400) coupled to receive an enable (EN) signal. The control circuit produces a first control signal (PWM) to provide a load current (IL) in response to the enable signal. A sample and hold circuit (408) is arranged to produce a third control signal (CSP) to emulate the load current and a fourth control signal (CSN′) to sample and hold value of the third control signal. A comparator circuit (416) is arranged to compare the third and fourth control signals and produce the enable signal in response to a result of the comparison.
Abstract:
A voltage converter (FIG. 4) for a power supply circuit is disclosed. The voltage converter comprises a control circuit (400) coupled to receive an enable (EN) signal. The control circuit produces a first control signal (PWM) to provide a load current (IL) in response to the enable signal. A sample and hold circuit (408) is arranged to produce a third control signal (CSP) to emulate the load current and a fourth control signal (CSN′) to sample and hold value of the third control signal. A comparator circuit (416) is arranged to compare the third and fourth control signals and produce the enable signal in response to a result of the comparison.
Abstract:
A circuit for controlling a switched-mode DC-DC converter. An inductor is connected between a switching node and an output node, and an output capacitor is connected in series with the inductor. An RC circuit is connected in parallel with the inductor to compensate for ripple voltage. In a discontinuous current mode, a pulse is applied to the switching node and then removed. In this mode, an RC time constant for the RC circuit is increased during the falling edge of a difference signal such that the difference signal does not drop below zero.