Abstract:
A network includes an intermediate node to communicate with a child node via a wireless network protocol. An intermediate node synchronizer in the intermediate node facilitates time synchronization with its parent node and with the child node. A child node synchronizer in the child node to facilitates time synchronization with the intermediate node. The intermediate node synchronizer exchanges synchronization data with the child node synchronizer to enable the child node to be time synchronized to the intermediate node before the intermediate node is synchronized to its parent node if the intermediate node has not synchronized to its parent node within a predetermined guard time period established for the child node.
Abstract:
A network includes at least one node to communicate with at least one other node via a wireless network protocol. The node includes a network configuration module to periodically switch a current node function of the node between an intermediate node function and a leaf node function. The switch of the current node function enables automatic reconfiguration of the wireless network based on detected communications between the at least one node and at least one intermediate node or at least one leaf node via the wireless network protocol.
Abstract:
A network includes a mobile network node (MNN) that includes a mobile node communications manager (MNCM) to facilitate wireless communications to a plurality of stationary network nodes (SNNs) in a wireless network via a wireless network protocol. The MNCM utilizes a multicast address received over the wireless network. The multicast address is assigned to a predetermined network time slot to communicate uplink data from the MNN to the SNNs. The MNN receives downlink data via a separate predetermined network address and time slot assigned to a given SNN.
Abstract:
A network includes an intermediate node to communicate with a child node via a wireless network protocol. An intermediate node synchronizer in the intermediate node facilitates time synchronization with its parent node and with the child node. A child node synchronizer in the child node to facilitates time synchronization with the intermediate node. The intermediate node synchronizer exchanges synchronization data with the child node synchronizer to enable the child node to be time synchronized to the intermediate node before the intermediate node is synchronized to its parent node if the intermediate node has not synchronized to its parent node within a predetermined guard time period established for the child node.
Abstract:
A network includes a first wireless node that communicates over a wireless network connection. The first wireless node includes a first encryption engine that processes a first initialization data set and a current transmit sequence associated with a current communication to generate a next transmit sequence that is employed to communicate with a second wireless node that derives a next received sequence that corresponds to the next transmit sequence to process a subsequent communication.
Abstract:
A network includes a plurality of parent nodes to communicate in a wireless network via a wireless network protocol. A network node establishes a network connection to one of the parent nodes of the plurality of parent nodes in response to received beacons from the parent nodes. A signal analyzer in the network node processes a received signal strength of the beacons and the number of beacons received over a given time period from each of the parent nodes. The signal analyzer selects the parent node by analyzing the received signal strength for a number of beacons received from each parent node with respect to a number of expected beacons transmitted from each parent node of the plurality of parent nodes over the given time period.
Abstract:
A network includes a mobile network node (MNN) that includes a mobile node communications manager (MNCM) to facilitate wireless communications to a plurality of stationary network nodes (SNNs) in a wireless network via a wireless network protocol. The MNCM utilizes a multicast address received over the wireless network. The multicast address is assigned to a predetermined network time slot to communicate uplink data from the MNN to the SNNs. The MNN receives downlink data via a separate predetermined network address and time slot assigned to a given SNN.
Abstract:
A network includes an intermediate node to communicate with a child node via a wireless network protocol. An intermediate node synchronizer in the intermediate node facilitates time synchronization with its parent node and with the child node. A child node synchronizer in the child node to facilitates time synchronization with the intermediate node. The intermediate node synchronizer exchanges synchronization data with the child node synchronizer to enable the child node to be time synchronized to the intermediate node before the intermediate node is synchronized to its parent node if the intermediate node has not synchronized to its parent node within a predetermined guard time period established for the child node.
Abstract:
A physical layer (PHY) data frame for use in conjunction with processor in a node, processor coupled to a program memory for storing a sequence of operating instructions. The frame has a preamble, PHY header, a MAC header and a MAC payload. The PHY header includes a destination address field having a destination address therein. The destination address is used by the processor to determine match with the node address.
Abstract:
An electronic device includes a printed circuit board (PCB) with electronics configured to generate and receive data by a radio-frequency carrier signal via a signal terminal. A monopole antenna having first and second ends is connected to a signal terminal of the PCB at the first end. A first section of the antenna extends away from the signal terminal by a first length in a first direction. A second section of the antenna extends away from the first section by a second greater length in a second direction different from the first direction. The first section is spaced apart from the PCB by a third section of the antenna, and the second end of the antenna is spaced apart from the PCB by a dielectric spacer. The length of the antenna may be ¼ of a carrier frequency provided by the signal terminal.