Abstract:
A deployable structure comprises: a mount comprising a first point and a second point opposite and a third point, a storage reel able to rotate about an axis Z, a tape spring able to switch from a configuration in which it is wound about the axis Z in the storage reel into a configuration in which it is deployed along an axis X substantially perpendicular to the axis Z, the first and second points forming a double support with the tape spring to keep the tape spring in the deployed configuration. The third point is able to form a simple support with the tape spring, the storage reel is able to move with respect to the third point and the storage reel is pressed against the third point to guide the deployment of the tape spring.
Abstract:
An autonomous spontaneous deployment deployable mast includes at least one elementary structural unit having a longitudinal deployment axis X and two platforms parallel to a plane YZ orthogonal to the axis X. The elementary structural unit includes N stages stacked above one another parallel to the longitudinal deployment axis X, where N is greater than 1. Each stage includes at least three longitudinal flexible tape-springs, the N stages being fixed to one another two by two by means of connecting platforms parallel to the plane YZ and two contiguous lower and upper stages being offset angularly relative to each other by rotation about the deployment axis X, the tape-springs of the lower stage being interleaved between the tape-springs of the upper stage.
Abstract:
A deployable mast with spontaneous autonomous deployment comprises at least one elementary structural block with a longitudinal axis of deployment X, the elementary structural block comprising two, respectively lower and upper platforms parallel to a plane YZ orthogonal to axis X, and N stages stacked on one another parallel to axis X, where N is more than 1, and where i is between 1 and N−1. Each stage comprises at least six flexible longitudinal connection arms which are articulated by tape springs, which arms are, in the deployed position, on planes parallel to axis X and are inclined relative to axis X, the N stages being secured to one another in pairs by means of connection platforms parallel to the plane YZ; two adjacent lower and upper stages are offset angularly relative to one another by rotation around the axis of deployment X.
Abstract:
A deployable structure comprises: a support, a tape spring fixed to the support, able to pass from a wound configuration wound about an axis Z, to a deployed configuration, and a mobile arm able to rotate with respect to the support about the Z-axis, able to form a first contact with the tape spring so as to control the deployment of the tape spring.
Abstract:
A deployment and aiming device of an instrument comprises: a first support, a second support to receive the instrument, N mandrels, N being an integer number greater than or equal to 1, positioned around the first support, each of the N mandrels rotationally mobile relative to the first support about a mandrel axis ZN intersecting the mandrel, N linear elements, each of the N linear elements cooperating with one of the N mandrels, each of the N linear elements having first and second ends, wherein the first end of the N linear elements is fixed in the mandrel with which it cooperates at a fixing point, wherein the second end of the N linear elements is linked to the second support, such that a rotation of the mandrel about its axis ZN generates a displacement of the fixing point.
Abstract:
A tape having a fully wound stable state and a fully unwound stable state, configured for space applications, the intermediate states between the fully wound state and the fully unwound state comprises a single continuous portion of wound tape with a first radius of curvature greater than a threshold value and a single continuous portion of unwound tape with a second radius of curvature less than the threshold value, the value of the second radius of curvature being continuous over the unwound portio; the tape comprises a stack comprising fibrous layers extending in a longitudinal direction, the resulting stack having symmetry with respect to a longitudinal plane of its fibres to compensate for torsional deformations generated by variations in temperature.