Abstract:
A VHTS or HTS multibeam telecommunications payload includes a first multibeam antenna system with passive antennas, which is configured to receive from and transmit to spots of access stations GW respectively in a first satellite receive Rx band and a first satellite transmit Tx band, and a second multibeam antenna system with passive antennas, which is configured to receive from and transmit to a user coverage zone respectively in a second satellite receive Rx band and a second satellite transmit Tx band, by generating multiple satellite receive user spots and multiple satellite transmit user spots. The payload is wherein it comprises a digital core, based on a digital transparent processor DTP offering total connectivity and total flexibility of allocation of frequency slots to the access station and user spots, and associated with the DTP an RF switching set, made up of one or more matrices of RF switches on source accesses of user spots in satellite transmit Tx only or in satellite transmit Tx and in satellite receive Rx so as to implement operation by beam hopping on clusters Gj/G′j of Tx and/or Rx user spots for which the number of spots Rj/R′j is less than or equal to the total number P of access station spots.
Abstract:
A broadband multi-beam satellite radiocommunication system configured to implement a scheme for re-use of frequencies from a total band allocated to an uplink comprises a satellite with a multi-beam receive antenna that forms adjacent reception spots of a terrestrial coverage. Each reception spot consists of a central inner zone and a peripheral zone. Each central inner zone is a cellular pattern identical except for a scale factor to geographical cells wherein the principal frequency sub-bands of a bundle of separate or adjacent principal sub-bands are unitarily distributed and the combination of which is equal to a principal band, included in the total band.
Abstract:
A satellite-based emission and reception device, intended to receive and to process radiofrequency signals originating from an uplink and then to emit the processed signals on a downlink towards terrestrial users, comprises a power divider, two independent frequency converters and two input demultiplexers connected respectively at the output of the two corresponding frequency converters, each frequency converter being controlled by a dedicated local oscillator, the two local oscillators operating at one and the same frequency, the two input demultiplexers comprising channel filters operating in different, disjoint frequency sub-bands spaced apart in frequency, two adjacent frequency sub-bands being filtered by two channel filters belonging to different input demultiplexers.