Abstract:
A method for processing a signal arising from coherent lidar includes a coherent source that is periodically frequency-modulated; a beat signal being generated by photodetector on the basis of the interference between an optical signal that is referred to as the local oscillator having a local oscillator frequency (fOL(t)) and an optical signal that is backscattered by a target illuminated by the lidar, said beat signal being digitized; the local oscillator frequency (fOL(t)) being made up of the sum of a mean value (f0) and of a modulation frequency (fmod(t)) arising from the modulation of the source, the modulation frequency being periodic according to a modulation period (TFO), each period comprising n linear portions having n frequency slopes (αi), respectively, where n is greater than or equal to 2, the method comprising the steps consisting in: complexly modulating the beat signal; complexly demodulating the modulated signal (Smod) by n demodulation frequencies (fdemod(i)) each having a single slope that is equal to the respective frequency slope (αi) of the modulation frequency (fmod), in order to obtain n demodulated signals (Sdemod(i)); determining n spectral densities (SP(i)) of the n demodulated signals (SdemodO)); determining n characteristic frequencies (ναi) determining information on the velocity and information on the distance of the target on the basis of said n characteristic frequencies (ναi).
Abstract:
A method for generating M demodulation signals is disclosed. In one aspect, the method includes: providing M input signals, injecting each input signal into at least one first interferometer, and detecting M demodulation signals. The method also includes choosing M positive integers that are not all equal to zero and computing M demodulation signals. The ith demodulation signal being the product of Ri+1 functions, Ri being the chosen integer that corresponds to the first delay of the ith first interferometer, and the pth function being equal to St,p(t)=S(t=pτi), where p is an integer between 0 and Ri, τi is the first delay introduced by the delay line of the ith first interferometer, and S is a transform of the signal at the output of the ith first interferometer.
Abstract:
A method for reducing the peak factor of a signal transmitted in a frequency band comprising several channels, the signal using a plurality of channels in the band comprises: a step of clipping the signal, a step of subtracting the clipped signal from the signal, so as to obtain a peak signal, a step of filtering the peak signal with the aid of a multichannel filter configured to comply with a predetermined spectral mask for each of the channels used by the signal, and a step of subtracting the filtered peak signal from the signal. A device for emitting a multichannel signal implementing the method for reducing the peak factor is also provided.
Abstract:
The general field of the invention is that of optical lidars comprising an optical porthole and operating at a first wavelength. The optical porthole of the lidar according to the invention comprises a layer or a sheet made of an optical material. The lidar comprises means for illuminating said layer or said sheet at a second wavelength different from the first wavelength, said material being transparent at the first wavelength and absorbent at the second wavelength, said second wavelength being located in the visible spectrum.
Abstract:
The general field of the invention is that of optical lidars comprising an optical porthole and operating at a first wavelength. The optical porthole of the lidar according to the invention comprises a layer or a sheet made of an optical material. The lidar comprises means for illuminating said layer or said sheet at a second wavelength different from the first wavelength, said material being transparent at the first wavelength and absorbent at the second wavelength, said second wavelength being located in the visible spectrum.
Abstract:
A method for processing a signal from a coherent lidar includes a coherent source, the method comprising steps consisting of: generating a first beat signal and a second beat signal, using respectively a first detection assembly and a second detection assembly for a plurality of n time intervals, determining n respective values of spectral density using a transform in the frequency domain of the cross-correlation between the first and second beat signals, determining a mean value of the spectral density using said n values of spectral density, determining a piece of location information on the target using the mean value of said spectral density.