Abstract:
A hydraulic system (e.g., of an aircraft or other vehicle) includes a pump, a pressure line coupled to the pump and configured to distribute pressurized hydraulic fluid, and a return line configured to return hydraulic fluid to a reservoir. The hydraulic system also includes an auxiliary leakage valve coupled to the pressure line, to the return line, and to an actuator. The auxiliary leakage valve is configured to receive a control signal and, based on the control signal, selectively open a restricted fluid path. The restricted fluid path couples the pressure line to the return line to allow a restricted amount of the hydraulic fluid to flow from the pressure line to the return line.
Abstract:
An aircraft may include at least one secondary power system requiring secondary power, at least two main engines, and at least three non-propulsive utility power (NPUP) generation systems. The NPUP generation systems may each be configured to provide full-time secondary power during operation of the aircraft. The NPUP generation systems may be configured to provide at least a portion of the secondary power required by the secondary power system.
Abstract:
An aircraft may include at least one secondary power system requiring secondary power, at least two main engines, and at least three non-propulsive utility power (NPUP) generation systems. The NPUP generation systems may each be configured to provide full-time secondary power during operation of the aircraft. The NPUP generation systems may be configured to provide at least a portion of the secondary power required by the secondary power system.
Abstract:
A hydraulic system (e.g., of an aircraft or other vehicle) includes a pump, a pressure line coupled to the pump and configured to distribute pressurized hydraulic fluid, and a return line configured to return hydraulic fluid to a reservoir. The hydraulic system also includes an auxiliary leakage valve coupled to the pressure line, to the return line, and to an actuator. The auxiliary leakage valve is configured to receive a control signal and, based on the control signal, selectively open a restricted fluid path. The restricted fluid path couples the pressure line to the return line to allow a restricted amount of the hydraulic fluid to flow from the pressure line to the return line.
Abstract:
A method includes receiving pump cycle location data associated with a fluid power system. The fluid power system includes a plurality of pumps (including at least a first pump, a second pump, and a third pump). Based on the pump cycle location data having a first value, the method includes activating the first pump as a primary pump. Based on the pump cycle having a second value, the method includes activating the second pump as the primary pump. The method also includes activating the third pump as a secondary pump when the fluid power system is in a multiple-pump operating mode.
Abstract:
An aircraft may include at least one secondary power system requiring secondary power, at least two main engines, and at least three non-propulsive utility power (NPUP) generation systems. The NPUP generation systems may each be configured to provide full-time secondary power during operation of the aircraft. The NPUP generation systems may be configured to provide at least a portion of the secondary power required by the secondary power system.
Abstract:
An aircraft may include at least one secondary power system requiring secondary power, at least two main engines, and at least three non-propulsive utility power (NPUP) generation systems. The NPUP generation systems may each be configured to provide full-time secondary power during operation of the aircraft. The NPUP generation systems may be configured to provide at least a portion of the secondary power required by the secondary power system.
Abstract:
A method includes receiving pump cycle location data associated with a fluid power system. The fluid power system includes a plurality of pumps (including at least a first pump, a second pump, and a third pump). Based on the pump cycle location data having a first value, the method includes activating the first pump as a primary pump. Based on the pump cycle having a second value, the method includes activating the second pump as the primary pump. The method also includes activating the third pump as a secondary pump when the fluid power system is in a multiple-pump operating mode.